Diseño de OTAs de baja transconductancia con rango lineal
extendido y sus aplicaciones en señales EEG
Franco Renato Campana Valderrama
Autor corresponsal: franco.campana@urp.edu.pe
Orcid: https://orcid.org/0000-0002-1395-8280
Universidad
Ricardo Palma, Perú.
Correspondencia: franco.campana@urp.edu.pe
DOI: https://doi.org/10.31381/perfilesingenieria.v20i21.5967
RECIBIDO:
10 de enero de 2024.
ACEPTADO: 27 de marzo de 2024.
Cómo citar
F. R. Campana Valderrama, «Low Transconductance OTAs
Design with Extended Linear Range and its Application in EEG
Signals», Perfiles_Ingenieria, vol. 20, n.º 21, pp. 151-164, jun. 2024.
Resumen
En este trabajo se presenta el diseño de OTAs
simétricos con bajo valor de Transconductancia (orden de los nA/V) y sus
aplicaciones en baja frecuencia y baja potencia. Para este objetivo, se usó
espejos de corriente serie-paralelo (S-P), los cuales dividen la
transconductancia del par diferencial. Con esta técnica se obtuvo
transconductores de hasta 1 nA/V. También se presenta una técnica para extender
el rango lineal de los pares diferenciales. Los OTAs simétricos diseñados serán
usados en filtros activos de baja frecuencia central para aplicaciones
biomédicas (señales EEG). Los capacitores de estos filtros están en el orden de
los picofaradios y están fuera del circuito integrado. Estos OTAs y Filtros
fueron diseñados con tecnología estándar de fabricación de 0.8 um. La
factibilidad de las técnicas que presentaremos, serán validadas mediante
resultados de simulación.
Palabras clave: amplificador,
baja transconductancia, microconsumo, baja frecuencia, espejos de corriente.
Abstract
In this work, the
design of symmetric OTAs with low transconductance value (nA/V order) and their
application in low frequency and low power is presented. For this aim, the
series-parallel (S-P) mirrors was used, which divided the differential pair
transconductance. With this technique, a 1 nA/V transconductor is reached. Techniques
for extend the linear range (hundreds milivolts) of the differential pair will
presented too. The Advanced Compact MOSFET Model ACM was used in the design
process. These symmetric OTAs designed will be used in active filters with low
central frequency, for biomedical applications (EEG signals). The capacitors of
this filters are in the picofaradads order, and are off chip. These OTAs and
filters were designed in 0.8 um standard technology. These techniques that we will present will be validated
through simulation
Keywords: amplifier,
low transconductance, low power, low frequency, current mirrors.
1. Introduction
In the field of medical electronics, active filters with very low cutoff
frequencies (of the order of a few hertz) are needed due to the relatively slow
electrical activity of the human body. Specific applications ECG, EEG systems
and pacemakers
For an operational transconductance amplifier-capacitor (OTA-C) filter
implementation, such low frequencies imply large capacitors and very low
transconductances. Thus, there are two entirely independent angles to the
problem that need to be addressed. One is the design of OTAs with very low
transconductances (typically of the order of a few nanoamperes per volt) and
high linearity, while the other is the realization of very large capacitors
(typically of the order of a few nanofarads) on chip
In this work shows by post layout simulations the feasibility of the
OTAs design with low value of transconductance Gm and its
application in active filters with low central frequency. For the OTAs
designed, the main characteristics to be considered are: extended linear range
at input (above 100 mV), low power consumption and low Gm value.
The ACM equations that will be used in the differential pair design will
be presented in section 2. In section 3 will described the methodology design
for OTAs with low Gm values, using the series-parallel S-P current
division technique, which will allow us to divide the differential pair input
transconductance. This paper presents the improvements in terms of current
consumption, input linear range and area, from that achieved in reference
In section 4, it details the use of these OTAs in active Bandpass
Filters with low central frequency, and will be used in the brain waves
filtering (EEG signals). Finally, in section 5 will give some conclusions.
2.
Differential Pair Design
The ACM
Mosfet model will be used to calculate the differential pair linear range in
tems of level inversion if . From figure
1(a):
Figure 1(a).
(a) Differential MOS pair,
and (b) Differential MOS pair with active linearization
The relevant equations that will be useful to design from the input pair
linearity in terms of level inversion are
(1)
The
equation (1) is very useful in the theoretical design stage of any differential
pair circuit. This expression will be valid in all levels
inversion. The α value can be 0.05 or 0.1, and represent the expected
percentage error \cite{arnaud1}. The if values can be 1<if
for weak inversion, if>100 for strong inversion and 1<if<100
for moderate inversion. For more details about the ACM model and their
relationships in levels inversion terms, could be found in the
To
enhance the linearity, a modified differential input pair can substitute M1 and
M2 in Fig. 1(a), as shown in Fig.1(b)
(2)
where gm1 is the trasnconductance pair, R is the degeneration
resistor that can made with MOS transistor (MR in Fig. 1(b)) and n
is the slope factor, slightly greater than unity and weakly dependent on the
gate voltage
3.
Ota Design Methodology
Here we examine the use of the series-parallel S-P technique, in order
to apply in the symmetric OTAs circuit; with this technique could be divide the
input pair transconductance for hundreds and allows the implementation of an
area efficient current divider
In Fig. 2(a) two transistors MS(D), are series connected; the equivalent
ratio (W/L) eq of the composite transistor is
(3)
Figure 2.
(a) Two series transistors associated and (b)
Two parallel transistors associated
From this
equation, if the MS and MD transistors have the same
(W/L), result will be (W/2L), it means that with the same aspect ratio (W/L)
for transistors connected as in Fig. (2), the equivalent transistor aspect
ratio it will be divided by 2. If it is generalized to "N" transistors
in series with the same aspect ratio, the result will be (W/NL), namely, the
equivalent transistor aspect ratio it will be divided by N.
In the same way, if it has
two transistors associated in parallel as in Fig. 2(b), the equivalent
relationship (W/L)eq will be:
(4)
For the last
equation, if the transistors have the same aspect ratio (W/L), the result
aspect ratio will be (2W/L). If it is generalized to "N" transistors
in parallel with the same aspect ratio, the result will be (MW/L). This
analysis can be extended up to achieve the topology shows in Fig. (3), that
represents the S-P technique, applied to a simple current mirror
Figure 3.
Generic SP current mirror
where:
(5)
If in the last relationship we do S=P=1
with R=Q=N, we obtain:
(6)
Applying the last equation to a
symmetric OTA, we get the following circuit:
Figure 4.
Symmetric OTA with S-P technique
For the mirrors of Fig. (4), N
transistors are associated in series an parallel to achieve the output
transconductance
(7)
where, gm1 is the differential pair
transconductance, given by:
(8)
where is the thermodynamic
voltage, and its 26 mV at room temperature.
Now, we show the strategy to follow to
get OTAs with low transconductance and extended input linear range. The
relationship between linear range input pair and level inversion if
is given by the eq. (1).
Suppose that the circuit of the Fig. (4)
requires a transconductor of a low value Gmx, and an input linear
range Vlinx with an α give by 5%. The inversion level if1
of the input pair is determined by eq. (1). For a given bias current, that can
be determined from the power consumption and area budgets, we have IBIAS=2ID1,
and according to the ACM model, we have ID1=ISQ(W/L)1i_f1,
where ISQ depends of the technology, therefore the (W/L)1=IBIAS/(2ISQif1).
So, with the with the IBIAS, α and if1 give by eq. 1
according to linear range requirements, we can get the (W/L)1 and gm1
by eq. 8. With this gm1, could be obtain the number of unit
transistors "N" or any arrangement unit transistor given by Eq. 7
With this technique it designed four
OTAs with different transconductance input values. For example, with if=40,
according to Eq. 1, we obtain Vlin=150mV, and with IBIAS=80
nA, the Gm1=297nA/V. In the table 1 we detail these circuits.
Table 1.
Summary of Transistors Arrangement
OTA |
Gmx |
M1 |
Arr |
(W/L)u |
|
|
M3 |
(W/L)u |
1 |
4.4 nS |
(3/50) |
5s |
(3/10) |
17p |
8s x 2p |
2s x 4p |
(4/4) |
2 |
8.8 nS |
(3/50) |
5s |
(3/10) |
17p |
6s x 3p |
2s x 4p |
(4/4) |
3 |
1.2 nS |
(3/50) |
5s |
(3/10) |
31p |
16s x 2p |
2s x 4p |
(4/4) |
4 |
15.6 nS |
(3/50) |
5s |
(3/10) |
8p |
5s x 2p |
2s x 4p |
(4/4) |
As an
example, we can extend the input linear range based in the circuit of Fig.1(b),
for all these OTAs and using the Eq.2. The Gmx target, M1
and M3 aspect ratio and its unitary arrangement are the same as
table 1, so we do not repeat here. The table 2 present the aspect ratios
resume.
Table 2.
Transistors Arrangement for Extended Linear
Range
OTA |
(W/L)R |
|
|
(W/L)u |
1 |
(3/250) |
10p |
6s x 2p |
(4/4) |
2 |
(3/250) |
15p |
4s x 4p |
(4/4) |
3 |
(3/250) |
12p |
9s |
(4/4) |
4 |
(3/250) |
6p |
3s x 2p |
(4/4) |
As an
example of layout, we show the layout of OTA 1 in Fig. (5). The layout
technique used for all these circuits was the common centroid.
Figure 5.
Layout of OTA 1 of Table I
Here, we
show in the table 2, a comparative survey using these
technique and the requirements achieve, with the other topologies and
techniques used for the requirements listed above.
Table 3.
Comparative Table off this Work with other
Circuits
Parameters |
OTA |
SD+CD |
FG+CD |
BD+CD |
This
Work |
||
Gm
(nS) |
11.6 |
11.55 |
11.5 |
11.24 |
4.4 |
8.8 |
|
1.2 |
15.6 |
||||||
Linearity
(mVp) |
80 |
120 |
165 |
450 |
150-500 |
150-500 |
|
150-500 |
150-500 |
||||||
IBIAS
(nA) |
2 |
100 |
200 |
500 |
80 |
80 |
|
80 |
80 |
||||||
Power |
16.2 nW |
1.35 uW |
1.62 uW |
4.05 uW |
406-417
nW |
413-429
nW |
|
402-404
nW |
422-450
nW |
||||||
Area
(mm2) |
1.44 |
0.21 |
4.65 |
0.22 |
0.023 |
0.026 |
|
0.042 |
0.028 |
||||||
Where, according to
Figure 6.
Transfer curve IOUT
vs. Vlin of OTA 1
Figure 7.
Transfer curve IOUT vs. Vlin for extended linear range OTA 1
4.
Filter Design
In the Fig. (8) we show the biquad
filter structure
Figure 8.
Bandpass filter topology
and the function transfer function is:
(9)
and the equations project design will be:
(10)
(11)
With the equations (10) and (11), we
proceed to design four bandpass filters to filtering the following brain waves: , and , with central frequency of 2.5, 6, 10 and 26.5 Hz,
respectively, and using for these filters the OTAs 3, 1, 2 and 4 for each,
respectively.
Then, according to Eq. 9 and 10, we can
find capacitors values found for the filters, using the OTAs designed in table
1. We show the filters detail in the table 4.
Table 4.
Summary of the Filters Designed with the OTAs
Filter |
FC (Hz) |
C1 (pF) |
C2 (pF) |
C3 (pF) |
C4 (pF) |
IBIAS (nA) |
Power (uW) |
Area (mm2) |
1 |
2.5 |
43 |
19 |
230 |
110 |
480 |
4.8 uW |
0.3 |
2 |
6 |
125 |
61 |
250 |
122 |
480 |
4.8 uW |
0.18 |
3 |
10 |
164 |
79 |
248 |
120 |
480 |
4.8 uW |
0.2 |
4 |
26.5 |
73 |
36 |
259 |
120 |
480 |
4.8 uW |
0.14 |
In Fig. (9) we show the Bode Diagram of
the designed filter above. We can see a good agreement among the theorical
estimate and the simulation results.
Figure 9.
Filters Bode Diagram
5.
Conclusions
In this work we can demonstrate that the application of the ACM model with the S-P technique that divided the current and the input transconductance, allow us obtain low output transconductance values and extended input linear range. Further, this work presented the improvement in relation to \cite{campana} in terms of linear range, power consumption and area.
All the OTAs in the table 1, were
applied to the low central frequency filter design successfully. The power
consumption were in microwatts and they not use a lot area.
For future survey, we attempt place the capacitors on
chip. For this target, we can scaling the transconductance/capacitors by 10.
6. References
[1] Veeravalli, Sanchez-Sinencio y S. Martinez,
«Different operational transconductance Amplifier topologies for obtaining Very
Small Transconductances, » de ISCAS 2000-IEEE International Symposium on
Circuits and Systems, May 28-31, 2000, Geneva, Switzerland, 2000.
[2]
R. Campana y M. Marquez, «Diseño de OTAs de Bajo GM y su aplicación en Baja
Frecuencia y Microconsumo,» de IBERCHIP, March 14-16, Lima, Peru, 2007.
[3] A. Arnaud y C. Galup-Montoro, «Pico A/V Range CMOS
Transconductors Using Series-Parallel Current Division, » Electronics Letters,
vol. 39, nº 18, pp. 1295-1296, 2003.
[4] A. Cunha, M. Schneider y C. Galup-Montoro, «An MOS
Transistor Model for Analog Circuit Design, » IEEE Journal of Solid-State
Circuits, vol. 33, nº 10, pp. 1510-1519, Octuber 1998.
[5] F. Krummenacher y N. Joehl, «A 4-Mhz CMOS
continuous time filter with on-chip automatic tuning, » IEEE Journal of
Solid-State Circuits, vol. 23, nº 3, p. 750–758, 1988.
[6] A. Arnaud, R. Fiorelli y C. Galup-Montoro, «On the
Design of Very Small Transconductance OTAs with Reduced Input Offset,» de SBCCI´05, Florianópolis-Brasil, 2005.
[7] C. Galup-Montoro, M. Schneider y R. Loss,
«Series-Parallel Association of FETs for High Gain and High Frequency
Applications, » IEEE Journal of Solid-State Circuits, vol. 29, nº 9, pp.
1094-1101, 1994.
[8] G. Düzenli, Y. Kiliç, H. Kuntman y A. Ataman, «On
the Design of Low Frequency Filters Using CMOS OTAs Operating in the
Subtreshold Region,» Microelectronics Journal, vol.
30, nº 1, pp. 45-54, 1999.
Trayectoria
académica
Franco
Renato Campana Valderrama
Universidad Ricardo Palma, Perú.
Ingeniero Electrónico
graduado en la Universidad Ricardo Palma (2006). Pasante en la Universidad
Católica del Uruguay (2007). Master en el área de Circuitos y Sistemas
Integrados por la Universidad Federal de Santa Catarina- Brasil (2010). Graduado
del Programa de Entrenamiento en Herramientas CADENCE para Diseño de Circuitos
Integrados en Modo Mixto, CT-1, CI-Brasil, Porto Alegre (2011).
Estudiante de
Doctorado en la Universidad Federal de Minas Gerais. Ganador del concurso de
Subvenciones y Publicaciones de Ciencia e Innovación Tecnológica-CONCYTEC
(2011), para la publicación del libro de su autoría “Los Dispositivos Semiconductores”.
Áreas de interés: Investigación y desarrollo en el Modelamiento del Transistor
MOS, técnicas de Diseño de Amplificadores con Ultra Bajo Consumo de Potencia y
Baja Tensión de Alimentación, Diseño de Referencias de Tensión Independientes
de la temperatura, y docencia en estas áreas.
Hasta el 2024, docente
de la Universidad Ricardo Palma y de la Universidad Peruana de Ciencias
Aplicadas.
Autor corresponsal: franco.campana@urp.edu.pe
Orcid: https://orcid.org/0000-0002-1395-8280
Contribución
de autoría
Único autor,
quien hizo la investigación total del tema del artículo.
Conflicto
de intereses
El autor
sostiene que no existen conflicto de intereses en el desarrollo de la investigación.
Responsabilidad
ética y legal
El desarrollo de
la investigación se realizó bajo la conformidad de los principios éticos del
conocimiento, respetando la originalidad de la información y su autenticidad.
Se han citado las fuentes con sus respectivos datos, y no me ha atribuido algún
concepto o filosofía planteada. Todos han sido asignados a sus respectivos
autores.
Declaración
sobre el uso de LLM (Large Language Model)
Este artículo no ha utilizado para el
desarrollo de la investigación textos provenientes de LLM (ChatGPT u otros).
Financiamiento
La presente
investigación ha sido financiada con los recursos propios del autor.
Agradecimiento
A los Doctores Alfredo
Arnaud Maceira, Joel Gak Szollozy y Matías Miguez de Mori, miembros del
Departamento de Ingeniería Eléctrica DIE, de la Universidad Católica del
Uruguay.
Correspondencia: franco.campana@urp.edu.pe