Evaluation of exposure
to Wi-Fi radiofrequency fields in indoor and outdoor environments in the Ricardo
Palma University campus, Lima, Peru, using a personal exposimeter
Evaluación
de la exposición a campos de radiofrecuencia Wi-Fi en ambientes interiores y
exteriores en el campus de la Universidad Ricardo Palma, Lima, Perú, utilizando
un exposímetro personal
Víctor Manuel Cruz Ornetta
Autor corresponsal:
victor.cruz@urp.edu.pe
Orcid: https://orcid.org/0000 0002 4353 7751
Universidad Ricardo Palma,
Perú.
Jorge Paúl Ubillús Gonzales
Orcid: https://orcid.org/0000 0001 6156 6663
Universidad Ricardo Palma,
Perú.
Julio César González Prado
Orcid: https://orcid.org/0000 0003 0384 7015
Universidad Ricardo Palma,
Perú.
Milton Marcelo Peña Calero
Orcid: https://orcid.org/0000 0003 0384 7015
Universidad Ricardo Palma,
Perú.
Manuel Enrique Isaías Pardo
Rendon
202111266@urp.edu.pe
Orcid: https://orcid.org/202111266@urp.edu.pe
Universidad Ricardo Palma, Perú.
Correspondencia: victor.cruz@urp.edu.pe
DOI: https://doi.org/10.31381/perfilesingenieria.v20i21.6726
RECIBIDO:
26 de abril de 2024.
ACEPTADO: 03 de junio de 2024.
Cómo citar
The objective of this study was to make an
evaluation of Wi-Fi radiofrequency fields in campus of Ricardo Palma University
in the Surco district, Lima, Perú using personal exposure meters. To carried it
out a literature review was first made, then the location of the environments was
defined. In total 96 outdoor and 10 indoor environments were selected. Subsequently,
the exposure meter including the proprietary software for data processing was
tested. The maximum contribution of Wi-Fi 2G and Wi-Fi 5G for outdoor
environments by main frequency bands to average exposure were 1.83 x 10-6
and 3.39 x10-5 W/m2 respectively and the maximum
contribution of Wi-Fi 2G and Wi-Fi 5G for indoor environments by main frequency
bands to average exposure were 1.33 x 10-6 and 2.96 x10-6 W/m2 respectively. Based
on the ICNIRP 1998 limits, the exposure quotients were also obtained the maximum
contribution of Wi-Fi 2G and Wi-Fi 5G for outdoor environments by main
frequency bands to average exposure were 1.83 x 10-5 and 3.39 x10-4 %
respectively and the maximum contribution of Wi-Fi 2G and Wi-Fi 5G for indoor
environments by main frequency bands to average exposure were 1.33 x 10-5
and 2.96 x10-5 W/m2 respectively. In conclusion, all
measurements made were well below international limits, for outdoor and indoor
environments the largest contributor to total exposure was broadcasting
services, the second largest were mobile phone base stations, for outdoor
environments the third largest was Wi-Fi 5G and mobile phone handsets exposure
was well below that of mobile phone base stations and for indoor environments
the third largest was mobile handsets and the last one was Wi-Fi.
Keywords: electromagnetic
field, non-ionizing radiation, radiofrequency field, exposimeter,
microenvironment.
Resumen
El objetivo de
este estudio fue realizar una evaluación de los campos de radiofrecuencia Wi-Fi
en el campus de la Universidad Ricardo Palma en el distrito de Surco, Lima,
Perú, utilizando exposímetros personales. Para esto, primero se realizó una
revisión de la literatura, luego se definió la ubicación de los ambientes. En
total, se seleccionaron 96 ambientes exteriores y 10 interiores.
Posteriormente, se probó el exposímetro incluyendo el software propietario para
el procesamiento de datos. La contribución máxima de Wi-Fi 2G y Wi-Fi 5G para
ambientes exteriores por bandas de frecuencia principales a la exposición
promedio fueron 1.83 x 10-6 y 3.39 x 10-5 W/m2 respectivamente y la
contribución máxima de Wi-Fi 2G y Wi-Fi 5G para ambientes interiores por bandas
de frecuencia principales a la exposición promedio fueron 1.33 x 10-6 y 2.96 x
10-6 W/m2 respectivamente. Con base en los límites ICNIRP 1998,
también se obtuvieron los cocientes de exposición, la contribución máxima de
Wi-Fi 2G y Wi-Fi 5G para entornos exteriores por bandas de frecuencia
principales a la exposición promedio fueron 1.83 x 10-5 y 3.39 x 10-4 %
respectivamente y la contribución máxima de Wi-Fi 2G y Wi-Fi 5G para entornos
interiores por bandas de frecuencia principales a la exposición promedio fueron
1.33 x 10-5 y 2.96 x 10-5 W/m2 respectivamente. En conclusión, todas
las mediciones realizadas estuvieron muy por debajo de los límites
internacionales, para entornos exteriores e interiores el mayor contribuyente a
la exposición total fueron los servicios de radiodifusión, el segundo más
grande fueron las estaciones base de telefonía móvil, para entornos exteriores
el tercero más grande fue Wi-Fi 5G y la exposición de los teléfonos móviles fue
muy inferior a la de las estaciones base de telefonía móvil y para entornos
interiores el tercero más grande fueron los teléfonos móviles y el último fue
Wi-Fi.
Palabras clave: campo
electromagnético, radiación no ionizante, campo de radiofrecuencia,
exposímetro, microambiente.
1. Introduction
Both in
Peru and in the world, the growth of Internet access continues at an
unstoppable pace, especially driven by mobile communications systems and
wireless access via Wi-Fi systems. According to the Supervisory Body for
Private Investment in Telecommunications (OSIPTEL) in Peru, in 2014-I there were
10.99 million mobile telephone lines with Internet access (mobile Internet) and
in 2023-II there were 30.45 million mobile Internet lines. While the percentage
of Internet access in homes due to fixed Internet is 39.4%, access due to
mobile Internet is 48.7%
The results
of the research on health effects from Wi- Fi are controversial and the only
established effects are the ones related to the increase in temperature caused
by RF. The bulk of studies have been taken into account for the formulation of
international recommendations on the maximum permissible limits of exposure to
non-ionizing radiation, published by the International Commission on
Non-Ionizing Radiation Protection (ICNIRP) 2020 limits
To know the
level of exposure to electromagnetic fields generated by telecommunications
services in general and by Wi-Fi systems in particular, measurement campaigns
are constantly carried out. These campaigns are carried out using expensive
equipment, applying protocols recommended by international organizations such
as the International Telecommunications Union
Figure 1.
Classification of wireless networks by their range
Source:
Techpedia
Figure 2.
Scheme of Wi-Fi network at home
Source:
Internetizado [21]
Recommendation ITU-R M.1450-5
Due to this, Wi-Fi systems and their signals are
present in almost all environments where the life of human beings takes place,
at home, work, study centers, hospitals, buses, trains, ships, airplanes and
many more; However, along with this great development and the tremendous
utility associated with these systems, an important concern has arisen about
the possible effects produced by electromagnetic waves from wireless
communications systems, including Wi-Fi systems. In 2013, the International
Agency for Research on Cancer (IARC) published volume 102 of the Monographs on
the Evaluation of Carcinogenic Risks to Human Beings in Chapter 6, Section 6.3
Global Evaluation classifies Radiofrequency Fields as belonging to Group 2B
" Possible Carcinogenic to Human”
This recurring concern about the possible effects of
Wi-Fi networks has given rise to numerous specific studies on the possible
effects on people's health and the levels of exposure to radio frequency
produced by Wi-Fi networks
Ramirez-Vazquez
et al. (2020)
In order to perform this study, they were conducted
the following steps:
Measurements were made in indoor environments such as
classrooms and the main library and outdoor environments inside faculties for
not less than 6 minutes per area.
For practical reasons, a calibrated personal exposimeter
EME Spy Evolution, MVG was used for the measurements. This small-sized
equipment with an isotropic probe allows the evaluation of the individual
contribution to the total level of non-ionizing radiation of the 20 services
shown in table 1.
Table 1.
Telecommunication Services
of Eme Spy Evolution
On July 6,
2003, the Ministry of Transports and Communications of Peru issued “The Maximum
Permissible Limits of Non-Ionizing Radiation in Telecommunications”
Table 2.
Peruvian
Maximum Permissible Limits FOR Non-Ionizing Radiation (rms values)
Table 3 shows the values of the Maximum Permissible Limits of
Non-Ionizing Radiations of Telecommunications Services that can be evaluated by
EME SPY Evolution.
The level of exposure to NIR emitted on a single frequency could be
expressed through a parameter called “exposure quotient”. As it can be seen in
equation (1) its value is given by the quotient of the measured power density
(Smeasured) and the power density limit (Slimit) (ICNIRP,
1998).
As it can be seen in the equations (2) and (3) the
exposure quotient can be expressed in terms of the measured.
The level of exposure to NIR emitted on a single frequency could be
expressed through a parameter called “exposure quotient”. As it can be seen in
equation (1) its value is given by the quotient of the measured power density
(Smeasured) and the power density limit (Slimit) (ICNIRP,
1998).
Table 3.
General public limits for services measured by Eme Spy
Evolution
As it can be seen in the equations (2) and (3) the exposure quotient can
be expressed in terms of the measured electric field strength (Emeasured)
and the field strength limit (Elimit). If the magnetic field were
measured, the same expression would be used.
The multi-frequency exposure ratio can be expressed in terms of the
measured electric field strength for each frequency (Ei-measured)
and the electric field strength limit (Ei-limit) or in terms of the
measured magnetic field strength for each frequency (Hi-measured)
and the magnetic field strength limit (Hi-limit) (Equations (4) and
(5)).
Before
starting the evaluation, the equipment was configured to record the measurements
values: electric field strength (V/m
The places where the measurements would be carried out in the different
faculties were identified and selected. The criteria considered for this
purpose was to choose the points below the access points.
Table 4 shows the number of points evaluated in each faculty, classified
according to the type of environment. In total were evaluated 106 points: 96
outdoor and 10 indoor.
Table 4.
Number of locations Evaluated
These
measurements included different telecommunications services and systems such as
broadcasting, mobile telephony and Wi-Fi.
Figure 3
shows the mean of the power density (W/m2) for outdoor environments by main
frequency bands. The contribution of Wi-Fi 2G and Wi-Fi 5G were 1.83 x 10-6 and
3.39 x10-5 W/m2 respectively.
Figure 3.
Average exposure by main frequency bands for outdoor environments (W/m2)
Figure 4
shows the mean of the power density (W/m2) for indoor environments by main
frequency bands. The contribution of Wi-Fi 2G and Wi-Fi 5G were 1.33 x 10-6 and
2.96 x10-6 W/m2 respectively.
Figure 4.
Average exposure by main frequency bands for indoor environments (W/m2)
Figure 5
shows the mean General Public Exposure (%) for outdoor environments by main
frequency bands. The contribution of Wi-Fi 2G and Wi-Fi 5G were 1.83 x 10-5 % and
3.39 x10-4 % respectively.
Figure 5.
Average exposure by main frequency bands for outdoor environments (%*)
*The
percentage is about the ICNIRP population reference levels
Figure 6
shows the mean General Public Exposure (%*) for indoor environments by main
frequency bands. The contribution of Wi-Fi 2G and Wi-Fi 5G were 1.33 x 10-5 % and
2.96 x10-5 % respectively.
Figure 6.
*The
percentage is about the ICNIRP population reference levels
Figure 7
shows a comparative graph of total exposure and Wi-Fi contribution to General
Public Exposure (%) in outdoor environments by faculties The
maximum value of the total exposure was 1.03 x 10-2 % for the Faculty of
Biological Sciences and of the Wi-Fi contribution was 5.08 x10-4 % for the
Faculty of Economics and Business.
Figure 7.
Comparative of the total and Wi-Fi contribution average exposure by faculties for outdoor environments (%*)
*The
percentage is about the ICNIRP population reference levels
Figure 8
shows a comparative graph of the total exposure and the Wi-Fi contribution to
General Public Exposure (%) in outdoor environments by faculties The maximum
value of the total exposure was 1.03 x 10-2 % for the Faculty of Biological
Sciences and of the Wi-Fi contribution was 5.08 x10-4 % for the Faculty of
Economics and Business.
Figure 8.
Comparative of the total and Wi-Fi contribution average exposure by classrooms for indoor environments (%*)
*The
percentage is about the ICNIRP population reference levels
Figure 9 presents a comparative of the total and Wi-Fi
contribution to average exposure by faculties and indoor measurements (%*).
Figure 9.
Comparative of the total and Wi-Fi contribution average exposure by faculties and indoor measurements (%*)
*The
percentage is with reg to the ICNIRP population reference levels
In this
study, a personal exposure meter (PEM) was used to perform the measurements and
a 5-s interval was used to simultaneously measure more frequency bands (20). It
was the same interval used by Ramirez-Vasquez at the University of Castilla-La
Mancha in Albacete, Spain
In the
Ricardo Palma University research, the
maximum of the average exposure by faculties of Wi-Fi 2G and Wi-Fi 5G contributions were 1.83
x 10-5 and 3.39 x10-4 % respectively, which are of the same
order of the values found by the study of Ramirez-Vazquez et al., (2020)
Spot measurements made with personal exposure meters have proven to be
very useful for making measurements in larger areas than spot measurements with
an interesting trade-off between technical and economic factors.
All the measurements made were well below the international limits, as
in other studies worldwide.
As in most studies in Peru the largest contributor to total exposure was
broadcasting services. The second largest were mobile phone base stations.
Exposure from mobile phone handsets was well below the exposure of
mobile phone base stations as it was in several studies performed worldwide.
The contribution of Wi-Fi radiation to total RF exposure is typically
one of the smallest. For outdoor environments, the third highest was 5G Wi-Fi,
and for indoor environments, the lowest was Wi-Fi.
[1] PUNKU, “Reportes. Reportes por servicios.
Servicio de Internet,” 2023.
[2] ITU/UN
tech agency, “Measuring Digital Development - Facts and Figures 2023 - ITU
Hub.”
[3] S.
Aït-Aïssa et al., “In situ detection of gliosis and apoptosis in the
brains of young rats exposed in utero to a Wi-Fi signal,” C R Phys, vol.
11, no. 9–10, pp. 592–601, Nov. 2010, doi: 10.1016/j.crhy.2010.10.005.
[4] S.
Aït‐Aïssa et al., “In utero and early‐life exposure of rats to a Wi‐Fi
signal: Screening of immune markers in sera and gestational outcome,” Bioelectromagnetics,
vol. 33, no. 5, pp. 410–420, Jul. 2012, doi: 10.1002/bem.21699.
[5] S.
Aït-Aïssa et al., “In Situ Expression of Heat-Shock Proteins and
3-Nitrotyrosine in Brains of Young Rats Exposed to a WiFi Signal In Utero and In Early Life,” Radiat Res,
vol. 179, no. 6, pp. 707–716, Jun. 2013, doi: 10.1667/RR2995.1.
[6] H.
Bektas, S. Dasdag, and M. S. Bektas, “Comparison of effects of 2.4 GHz Wi-Fi
and mobile phone exposure on human placenta and cord blood,” Biotechnology
& Biotechnological Equipment, vol. 34, no. 1, pp. 154–162, Jan. 2020,
doi: 10.1080/13102818.2020.1725639.
[7] S.
Dasdag, M. Taş, M. Z. Akdag, and K. Yegin, “Effect of long-term exposure of
2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes
functions,” Electromagn Biol Med, vol. 34, no. 1, pp. 37–42, Jan. 2015,
doi: 10.3109/15368378.2013.869752.
[8] S.
Shokri, A. Soltani, M. Kazemi, D. Sardari, and F. B. Mofrad, “Effects of Wi-Fi
(2.45 GHz) Exposure on Apoptosis, Sperm Parameters and Testicular
Histomorphometry in Rats: A Time Course Study,” Cell J, vol. 17, no. 2,
pp. 322–331, 2015.
[9] International
Commission on Non-Ionizing Radiation Protection, “Guidelines for Limiting
Exposure to Electromagnetic Fields (100 kHz to 300 GHz),” Health Phys,
vol. 118, no. 5, pp. 483–524, May 2020, doi: 10.1097/HP.0000000000001210.
[10] International
Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines for
limiting exposure to time-varying electric, magnetic, and electromagnetic
fields (up to 300 GHz). International Commission on Non-Ionizing Radiation
Protection.,” Health Phys, vol. 74, no. 4, pp. 494–522, Apr. 1998.
[11] IEEE,
“IEEE Standard for Safety Levels with Respect to Human Exposure to Radio
Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” IEEE Std C95.1-1991,
pp. 1–76, 1992, doi: 10.1109/IEEESTD.1992.101091.
[12] International
Telecommunication Union, “Guidance on complying with limits for human exposure
to electromagnetic fields,” no. K.52 (06/2021). pp. 1–44, 2021. [Online].
Available:
https://handle.itu.int/11.1002/1000/14724-en?locatt=format:pdf&auth
[13] Ministerio de Transportes y Comunicaciones,
“Decreto Supremo n.° 038-2003-MTC.” [Online].
Available:
https://www.gob.pe/institucion/mtc/normas-legales/308749-038-2003-mtc
[14] J.
Tomitsch, E. Dechant, and W. Frank, “Survey of electromagnetic field exposure
in bedrooms of residences in lower Austria,” Bioelectromagnetics, vol.
31, no. 3, pp. 200–208, Apr. 2010, doi: 10.1002/bem.20548.
[15] L.
Verloock, W. Joseph, F. Goeminne, L. Martens, M. Verlaek, and K. Constandt,
“Temporal 24-hour assessment of radio frequency exposure in schools and homes,”
Measurement, vol. 56, pp. 50–57, Oct. 2014, doi:
10.1016/J.MEASUREMENT.2014.06.012.
[16] R.
Ramirez-Vazquez, I. Escobar, A. Thielens, and E. Arribas, “Measurements and
Analysis of Personal Exposure to Radiofrequency Electromagnetic Fields at
Outdoor and Indoor School Buildings: A Case Study at a Spanish School,” IEEE
Access, vol. 8, pp. 195692–195702, 2020, doi: 10.1109/ACCESS.2020.3033800.
[17] R.
Ramirez-Vazquez et al., “Georeferencing of Personal Exposure to
Radiofrequency Electromagnetic Fields from Wi-Fi in a University Area,” Int
J Environ Res Public Health, vol. 17, no. 6, p. 1898, Mar. 2020, doi:
10.3390/ijerph17061898.
[18] V. Cruz Ornetta et al., “Evaluación
de radiaciones no ionizantes de la red Wi-Fi en la Universidad Nacional Mayor
de San Marcos,” Theorēma (Lima, Segunda época, En línea), no. 3, pp.
119–132, Jun. 2016, [Online]. https://revistasinvestigacion.unmsm.edu.pe/index.php/Theo/article/view/11982
[19] S. Sagar,
B. Struchen, V. Finta, M. Eeftens, and M. Röösli, “Use of portable exposimeters
to monitor radiofrequency electromagnetic field exposure in the everyday
environment,” Environ Res, vol. 150, pp. 289–298, Oct. 2016, doi:
10.1016/j.envres.2016.06.020.
[20] Techpedia, “Redes inalámbricas.” [Online].
Available: https://techpedia.fel.cvut.cz/html/frame.php?oid=9&pid=1003&finf=
[21] E. G. Del Olmo, “Red ad hoc inalámbrica: qué
es, cómo crearla, usos y características.” Apr. 2023. [Online]. Available: https://www.internetizado.com/red-ad-hoc
[22] International
Telecommunication Union, “Recommendation ITU-R M.1450-5 Characteristics of
broadband radio local area networks,” Apr. 2014. [Online]. Available:
https://www.itu.int/rec/recommendation.asp?lang=en&parent=R-REC-M.1450-5-201404-I
[23] IARC
Working Group on the Evaluation of Carcinogenic Risks to Humans, “Non-ionizing
radiation, Part 2: Radiofrequency electromagnetic fields.,” IARC Monogr Eval
Carcinog Risks Hum, vol. 102, no. Pt 2, pp. 1–460, 2013.
[24] World
Health Organization, Establishing a Dialogue on Risks from Electromagnetic
Fields. World Health Organization, 2002.
[25] R.
Ramirez-Vazquez, I. Escobar, A. Martinez-Plaza, and E. Arribas, “Comparison of
personal exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a
Spanish university over three years,” Science of The Total Environment,
vol. 858, p. 160008, Feb. 2023, doi: 10.1016/J.SCITOTENV.2022.160008.
[26] R.
Aminzadeh et al., “On-body calibration and measurements using personal
radiofrequency exposimeters in indoor diffuse and specular environments,” Bioelectromagnetics,
vol. 37, no. 5, pp. 298–309, Apr. 2016.
[27] C. R.
Bhatt, M. Redmayne, B. Billah, M. J. Abramson, and G. Benke,
“Radiofrequency-electromagnetic field exposures in kindergarten children,” J
Expo Sci Environ Epidemiol, vol. 27, no. 5, pp. 497–504, Sep. 2017, doi:
10.1038/jes.2016.55.
[28] C. R.
Bhatt, S. Henderson, C. Brzozek, and G. Benke, “Instruments to measure
environmental and personal radiofrequency-electromagnetic field exposures: an
update,” Phys Eng Sci Med, vol. 45, no. 3, pp. 687–704, Sep. 2022, doi:
10.1007/s13246-022-01146-y.
[29] L. E.
Birks et al., “Spatial and temporal variability of personal
environmental exposure to radio frequency electromagnetic fields in children in
Europe,” Environ Int, vol. 117, pp. 204–214, Aug. 2018, doi: 10.1016/j.envint.2018.04.026.
[30] MVG, “EME
Spy Evolution: Public RF Safety.” [Online]. Available:
https://www.mvg-world.com/en/products/rf-safety/public-rf-safety/eme-spy-evolution.
Trayectoria académica
Víctor Manuel Cruz Ornetta
Universidad Ricardo Palma, Perú.
Profesor Principal
de la Universidad Ricardo Palma y de la Universidad Nacional Mayor de San
Marcos, Lima, Perú, Doctor en Ciencias Ambientales. Profesor Principal,
Facultad de Ingeniería, Universidad Ricardo Palma, Lima, Perú y Profesor
Principal, Facultad de Ingeniería Electrónica y Eléctrica, Universidad Nacional
Mayor de San Marcos, Lima, Perú.
Autor corresponsal: victor.cruz@urp.edu.pe
Orcid:
https://orcid.org/0000 0002 4353 7751
Jorge Paúl Ubillús Gonzales
Universidad Ricardo Palma, Perú.
Académico
Profesional de Electrónica de la Universidad Ricardo Palma. Ha sido miembro de
la Escuela Profesional de Electrónica, jefe del Laboratorio de Sistemas
Digitales, jefe de la Oficina de Bienes y Servicios de la Facultad de
Ingeniería, director de la Escuela Académico Profesional de Electrónica y
director de la Oficina Central de Informática y Cómputo de la Universidad
Ricardo Palma.
Orcid: https://orcid.org/0000 0001 6156 6663
Julio César González Prado
Universidad Ricardo Palma, Perú.
Ingeniero
electrónico por la Universidad Nacional de Ingeniería maestro en Ciencias de la
Electrónica con mención en Control y Automatización por la universidad nacional
del callao. Maestro en docencia superior por la Universidad Ricardo Palma.
Estudios concluidos de doctorado en Ingeniería Eléctrica por la universidad
nacional del callao. Docente de la Universidad Ricardo palma de la carrera de
Ingeniería
Electrónica e Ingeniería Mecatrónica. Áreas de interés: sistemas digitales y
microelectrónica.
Orcid: https://orcid.org/0000 0003 0384 7015
Milton Marcelo Peña Calero
Universidad Ricardo Palma, Perú.
Estudiante
del 7mo ciclo de la carrera de Ingeniería Electrónica de la Universidad Ricardo
Palma.
Orcid: https://orcid.org/0000 0003 0384 7015
Manuel Enrique Isaías Pardo
Rendon
Universidad Ricardo Palma, Perú.
Estudiante del 6to ciclo de la carrera de Ingeniería Electrónica de la
Universidad Ricardo Palma.
Orcid: https://orcid.org/202111266@urp.edu.pe
Contribución de autoría
Víctor
Cruz Ornetta: Diseñó, participó en las
mediciones, análisis de datos, redacción y aprobación de este artículo.
Jorge
Paúl Ubillús Gonzales: participó en las
mediciones, análisis de datos, redacción y aprobación de este artículo.
Julio
César González Prado: participó en las
mediciones, análisis de datos y en la redacción de este artículo.
Milton
Marcelo Peña Calero: Participó en las
mediciones, análisis de datos y redacción de este artículo.
Manuel
Enrique Isaías Pardo Rendon: participó
en las mediciones, análisis de datos y redacción de este artículo.
Conflicto
de intereses
Los autores expresan que no existen conflicto de intereses en el
desarrollo de la presente investigación.
Responsabilidad
ética y legal
El desarrollo de la investigación se realizó bajo la conformidad de los
principios éticos del conocimiento, respetando la originalidad de la
información y su autenticidad.
Declaración
sobre el uso de LLM (Large Language Model)
Este artículo no
ha utilizado para el desarrollo de la investigación textos provenientes de LLM
(ChatGPT u otros).
Financiamiento
La presente investigación ha sido financiada por el Vicerrectorado de
Investigación de la Universidad Ricardo Palma.
Agradecimiento
Al
Vicerrectorado de Investigación de la Universidad Ricardo Palma por
financiamiento del Proyecto.
Correspondencia: victor.cruz@urp.edu.pe