Revista Biotempo: ISSN Versión Impresa: 1992-2159; ISSN Versión electrónica: 2519-5697 Pérez & Iannacone
76
Marcato, C.; Pinelli, E.; Cecchi, M.; Winterton, P. & Guiresse,
M. 2009. Bioavailability of Cu and Zn in raw and
anaerobically digested pig slurry. Ecotoxicology
Enviromental. Safety, 72: 1538-1544.
Matraszek, R.; Hawrylak, N.B.; Chwil, S. & Chwil, M.
2016.Composición macroelemental de plantas
de lechuga estresadas con cadmio cultivadas
en condiciones de nutrición intensiva con
azufre.Journal of Environmental Management,
180: 24-34.
Mina, R.; Alves, J.; Alves da Silva, A.; Natal da Luz, T.;
Cabral, J.A.; Barros, P.; Topping, C.J. & Sousa,
J.P. 2019. Wing membrane and fur samples
as reliable biological matrices to measure
bioaccumulation of metals and metalloids in
bats. Environmental Pollution, 253: 199-206.
Mohamed, R.; Zainudin, B.H. & Syukor, Y.S. 2020.
Method validation and determination of heavy
metals in cocoa beans and cocoa products by
microwave assisted digestion technique with
inductively coupled plasma mass spectrometry.
Food Chemistry, 303: 1-6.
Montgomery, D.C. 2004. Diseño y análisis de experimentos.
3ra ed. Ed. Félix Varela. La Habana, Cuba.
Moor, T.C. & Lymberopoulou, V.J. 2001. Dietrich,
Determination of heavy metals in soils, sediments
and geological materials by ICP-AES and ICP-
MS. Microchimica Acta, 136: 123-128.
Moreno, A.S.A.; Gomes, C.P. & Bianchini, A. 2018.
Metal accumulation and expression of genes
encoding for metallothionein and copper
transporters in a chronically exposed wild
population of the sh Hyphessobrycon luetkenii.
Comparative Biochemistry and Physiology,
211: 25-31.
Pereira, S.B; Bitobrovec, A; Mendes, H.A.C; Picada, P.R.;
Los Weinert, P.; Egéa dos Anjos, V. 2019. In vitro
bioaccessibility of Al, Cu, Cd, and Pb following
simulated gastrointestinal digestion and total
content of these metals in dierent Brazilian
brands of yerba mate tea. Food Chemistry, 281:
285-293.
Poey, F. 1854. Los guajacones, pececillos de agua dulce.
Memorias de la Historia Natural de la Isla de
Cuba, 1: 374-390.
Pontes, F.V., Mendes, B.A.; de Souza, E.M.; Ferreira, F.N.;
da Silva, L.I.; Carneiro, M.C.; Monteiro, M.I.;
de Almeida, M.D.; Neto, A.A.; & Vaitsman,
D.S. 2010. Determination of metals in coal
y ashes using ultrasound-assisted digestion
followed by inductively coupled plasma optical
emission spectrometry. Analytical Chimical
Acta, 659: 55-59.
Qiu, Y.; Frear, C.; Chen, S.; Ndegwa, P.; Harrison, J.; Yao,
Y. & Ma, J. 2020. Accumulation of long-chain
fatty acids from Nannochloropsis salina enhanced
by breaking microalgae cell wall under alkaline
digestion. Renewable Energy, 149: 691-700.
Ramanathan, T. & Ting, Y.P. 2015. Selección de métodos
de digestión húmeda para la cuanticación de
metales en desechos sólidos peligrosos. Journal
of Environmental Chemical Engineering, 3:
1459-1467.
Sa, K.; Kant, K.; Bramhecha, I.; Mathur, P. & Sheikh,
J. 2020. Multifunctional modication of
cotton using layer-by-layer nishing with
chitosan, sodium lignin sulphonate and boric
acid. International Journal of Biological
Macromolecules, 158: 903-910.
Sastre, J. Sauquillo, A.; Vidal, M. & Rauret, M. 2002.
Determination of Cd, Cu, Pb and Zn in
environmental samples: microwave-assisted
total digestion versus aqua regia and nitric acid
extraction. Analytic Chimical Acta, 462: 59-72.
Smith, G. & Diehl, H. 1959. e wet oxidation of
bone: Digestion with 100 per cent sulphuric
acid followed by the addition of dioxonium
perchlorate. Talanta, 3: 41-46.
Tessier, A., Campbell, P.G.C. & Bisson, M. 1979.
Sequential extraction procedure for the
speciation of particulate trace metals. Analytical.
Chemistry, 51: 844-851.
Xua, Y.H.; Iwashitab, A.; Nakajimab, T.; Yamashitab,
H.; Takanashib, H. & Ohki, A. 2005. Eect of
HF addition on the microwave-assisted acid-
digestion for the determination of metals in coal
by inductively coupled plasma-atomic emission
spectrometry. Talanta, 66: 58-64.
Zeng, X.; Xiao, Z.; Zhang, G.; Wang, A.; Li, Z.; Liu,