image/svg+xmlBiotempo 2014, Volumen 13, 39-45ChARACTERIZATION OF GLUTAMATERGIC PhENOTYPES IN hYBRID SEPTAL NEUROBLASTOMA (SN56) CELLSLuis F. Pacheco1M. Velazquez1M.Villarreal1J. Rodriguez1Boris Ermolisnky1.2Emilio R. Garrido-Sanabria1,ABSTRACTseptum neurons (cholinergic) and tumoral neuroblastoma cells. Cholinergic cells synthesize and release the the vesicular glutamate transporter type 1 (VGluT1), a protein that is normally produced by glutamatergic phenotype which is important because glutamatergic neurons have been associated to the pathogenesis of expression of glutamatergic phenotype, by qPCR, western blotting and Immunocytochemistry assay. The were separated by each experiment, primary antibodies or primers against NMDA glutamate receptor subunit hypothesis,. Expression of these markers will indicate a glutamatergic phenotype. After secondary detection glutamate NR2B receptor subtype and the VGluT1 transporter in both post-synaptic and presynaptic structures and glutamatergic phenotype. 1 Department of Biological Sciences at the University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520 USA. INTRODUCTIONThe murine basal forebrain cholinergic cell line neurons of the mouse postnatal day 21 septum and the murine neuroblastoma cell line N18TG2 cholinergic neuronal phenotype upon stimulation with membrane permeable dibutyryl cAMP (dbcAMP) and all-trans-retinoic acid (Blusztajn et 1995) and nerve growth factor (Nilbratt et al., 2007). Cholinergic properties include: increased synthesis of acethylcholine (Ach), enhanced activity of choline acetyltransferase (ChAT), spontaneous and depolarization-evoked ACh release (Blusztajn et al., upregulation of vesicular acetylcholine transporter (VAChT) gene expression (Berse and Blusztajn, 1995), increased expression of different nicotinic acetylcholine receptor (nAChR) subtypes (Nilbratt et al., 2007) and several morphological features protein immunoreactivity, puncta adherens, neuritic varicosities, vesicles) (Hammond et al., 
image/svg+xml392 The Center for Biomedical Studies
image/svg+xmlBiotempo 2014, Volumen 13, 39-45to investigate the pathogenesis of neurological characterized by cholinergic dysfunction and progressive basal forebrain cell loss (Mufson et characteristics that make it a useful model for studying neuronal differentiation. This cell line, when treated with Retinoic Acid and cAMP, stops therefore, it makes it into an ideal cell line to study neuronal function. It is not clear whether these cells form excitatory glutamatergic synapses. In this study, we investigate this problem by performing electrophysiology, calcium imaging, qPCR and immunocytochemistry and co-localization analysis marker of glutamatergic synapses. The antibodies work while investigating the excitatory synapses expressing glutamatergic markers. receptive to glutamatergic synapses, we will be the expression of glutamatergic markers including vesicular glutamate transporter1 (VGluT1) and glutamate receptor subunit epsilon-2 (NR2B) in MATERIALS AND METhODS1. Cell Culture Hammond et al., 1990) previously shown to express that was generously provided(Department of Pathology, Emory University Schoolof Medicine, Atlanta, GA). The cells were atmosphere of 5% 2Sigma-Aldrich, Saint Louis, USA) supplemented with10% fetal bovine serum and penicillin-cells were passed at 1:10 were cultured in serum-free DMEM supplemented density of ~1×10cells on coverslip-lysine of 12 round diameter were 10% fetal bovine serum with 1 mM glutamine and 100ug/ml penicillin/streptomycin per 1 ml at 37 °C 2. The cells were differentiated by 1, 2, 3 and 4 days with 1mM ibutyryl-cAMP (cAMP)/1uM all trans-Retinoic acid (RA), or no-differentiated (control)2. ImmunocytochemistryFollowing the plating of both differentiated (using 15 min with 4% paraformaldehyde/PBS followed by 3 PBS washes. Antibodies(Ab) were added: mouse monoclonal Ab 75-097, (NR2B), rabbit polyclonal Ab 32942 (NMDA)and guinea pig , polyclonal Ab 5905 (vGlut1). Then, they were left to incubate overnight. After washing the cells three times with PBS they are exposed to corresponding secondary antibodies. Finally, the cells are washed three times with PBS and mounted to a slide prior to viewing. Imaging was performed using laser inverted microscope.3. qPCR. Real-time PCR reactions were carried out mGlu1/5, NR2B and nAChR previously validated in end-point PCR assays. The data was collected was performed using the comparative threshold (CT) method after determining the CT values for reference () and target genes. GAPDH4. Calcium Imaging Intracellular Ca2+measure-ments using Fluo-4 Direct Calcium Assay Kits (in-were treated with 1 µM probenesic at time zero and -lation. Positive control was used ACSFRESULTS AND CONCLUSION
image/svg+xml40with 1 mM dibutyrylcyclic AMP (dbcAMP) for 24, demonstrate the co-existence of the pre-synaptic
image/svg+xmlBiotempo 2014, Volumen 13, 39-45Vesicular Glutamate Transporter 1 (vGlut1) with the post-synaptic Glutamate Receptor Subunit Epsilon-2 (NR2B) and the metabotropic glutamate results electrophysiological, faster action potential addition the ratio the expression in differentiated mGlu1/5, NR2B and nAChR in no differentiated cells.This cell line model will now be used to further investigate drugs that modulate excitatory glutamate transmission along with cholinergic transmission with potential implications for understanding the basic mechanisms of epilepsy and other neurological disorders.AcknowledgmentsThis work was supported by grants from LSAMP and National Institutes of Health as follows: NS063950-03, 3SC1NS063950-03S1 (ARRA), P20MD001091, P20MD000161 to Dr. Garrido-Sanabria by the National Institute of Neurological Disorders., ARRA 3R25GM065925-06S1
image/svg+xml41A. Current clamp recordings of undifferentiated cells shows wide action potentials in response to electrical stimulation
image/svg+xmlBiotempo 2014, Volumen 13, 39-45(square current steps, below). . Differentiated neuron exhibited faster action potential in response to similar Bstimulation protocol. and . Voltage-clamp recordings revealed small sodium current in undifferentiated CDcells ( and while differentiated neurons exhibited large sodium currents. . Analysis of the current C1C2)Eactivation kinetics shows that sodium currents in differentiated cells have faster rising and decay phases (E) and are activated at lower membrane potential (). FG* Student t-test, <0.05) and current density (normalized to the cell capacitance) (undiff: -25.0 ± 5.5 pA/pF PP<0.05). Time constant of activation was also faster in differentiated cells (Student t-test, p<0.05). Immunocytochemistry for Glutamate Vesicle Transporter (vGlut1) and Glutamate Receptor Figure 2: (A) Represents the validation immunocytochemistry of the polyclonal antibody vesicle transporter cells
image/svg+xml42
image/svg+xmlBiotempo 2014, Volumen 13, 39-45Co-localization of NMDA with vGlut1 and NR2BFigure 3:performed. This chart illustrates the presence of vGlut1, NMDA, and NR2B. NMDA, the glutamate receptor family in which NR2B belongs to (both post synaptic structures), peaks with NR2B. Next, you see the peak of vGlut1, a pre-synaptic transporter.Figure 4. Relative gene expression analysis of vGlut1, mGlur1, NR2B and nAChR respectively was performed by the comparative CT qPCR method using primers (see the legend). Data (fold changes) is represented as arbitrary units normalized relative to gene expression control group. Analysis was performed in total RNA 
image/svg+xml43
image/svg+xmlBiotempo 2014, Volumen 13, 39-45-neurons exhibit spontaneous activity. Pseudoco-lored image sequence of changes in intracellular spontaneous activity , monitored at 5 frame per microscope. A1. Fluorescence intensity changes over time in neurons 1, 2 and 3 revealed sponta-neous activity and synchronization of activity bet-represent increases in intracellular Ca2+ concentra-tions (Ca2+ transients or spikes) which are related to spontaneous action potentials in these neurons. of NMDA (AP-5, 50 uM) and AMPA receptors activity. B1. Fluorescence intensity changes over time in neurons 1 and 2. C. Representative bar gra-ph depicting pool data on changes in event (Ca2+ transients) frequency befor and after pharmacolo-gical block of NMDA and AMPA receptors. Paired Primers:a. 5-tgcctcaggcttaagatgca-3 Forwarda. 5-caagcggagaacgactttca-3 Reverseb. 5-ccttgcaccgtctgatttggaggctg-3 Forwardb. 5-cagcgcgaaccaccctgacg-3 Reversec. 5-cccagaccacaagcgctact-3 Forwardc. 5-gcctccactgaccgaatctc-3 Reversed. 5-acggcgctttgccattgtc-3 Forwardd. 5-ccagcttcatgctgcagttc-3 ReverseLegend:a. vGlut1, b. mGlur1/5, c. NR2B, d. nAChR
image/svg+xml44
image/svg+xmlBiotempo 2014, Volumen 13, 39-45with red representing high Ca2+ concentrations and blue representing low Ca2+ concentrations. Scale bar for A and B = 100 microns.REFERENCESBERSE, B., Blusztajn, J.K., 1995. Coordinated up-regulation of choline acetyltransferase and vesi-cular acetylcholine transporter gene expression by the retinoic acid receptor alpha, cAMP, and leukemia inhibitory factor/ciliary neurotrophic factor signaling pathways in a murine septal cell line. J Biol Chem. 270, 22101-4., H., Tomaszewicz, M., Madziar, B., Cwikowska, J., Pawelczyk, T., Szutowicz, A., 2003. Relationships between cholinergic phe-notype and acetyl-CoA level in hybrid murine neuroblastoma cells of septal origin. J Neurosci Res. 73, 717-21.BLUSZTAJN, J.K., Venturini, A., Jackson, D.A., synthesis and release is enhanced by dibutyryl cyclic AMP in a neuronal cell line derived from mouse septum. J Neurosci. 12, 793-9., L.V., Diaz, M.E., Beers, D.R., Neely, A., channels in amyloid-induced cell death. J Neu-rochem. 70, 1925-34.GUERRA, B., Diaz, M., Alonso, R., Marin, R., 2004. Plasma membrane oestrogen receptor mediates neuroprotection against beta-amyloid toxicity through activation of Raf-1/MEK/ERK cells. J Neurochem. 91, 99-109.hybrid cell lines derived from central cholinergic neurons. Science. 234, 1237-40.-ner, B.H., 1990. Development and characteriza-tion of clonal cell lines derived from septal cho-linergic neurons. Brain Res. 512, 190-200.HEINITZ, K., Beck, M., Schliebs, R., Perez-Polo, -gomers of beta-amyloid(1-42) on cholinergic , A., Gul-Hinc, S., Bie-larczyk, H., Suszkiw, J.B., Pawelczyk, T., Dys, A., Szutowicz, A., 2008. Effects of lead on cho--, A., Blusztajn, J.K., Szutowicz, A., 1997. Activities of enzymes of acetyl-CoA and -nergic cell line differentiated by dibutyryl cyclic AMP and all-trans retinoic acid. Folia Neuro-pathol. 35, 247-9.EL, S., Raap, M., Bigl, M., Eschrich, K., induces the expression of Alzheimer disease-rele-revealed by proteomic analysis. Int J Dev Neurosci. ., E.J., Counts, S.E., Perez, S.E., Gins-berg, S.D., 2008. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother. 8, 1703-18.NILBRATT, M., Friberg, L., Mousavi, M., Marutle, A., Nordberg, A., 2007. Retinoic acid and nerve growth factor induce differential regulation of nicotinic acetylcholine receptor subunit expres-PEDERSENB.H., Blusztajn, J.K., 1995. All-trans- and 9-cis-retinoic acid enhance the cholinergic properties of a murine septal cell line: evidence that the effects are mediated by activation of retinoic PEDERSEN-choline synthesis in a cell line derived from cho-linergic neurons of the basal forebrain. Proc Natl , A., Bielarczyk, H., Gul, S., Ronows-ka, A., Pawelczyk, T., Jankowska-Kulawy, A., cholinergic neuroblastoma cells to neurotoxic 
image/svg+xml45