Rehabilitación respiratoria oportuna y precoz en pacientes con neumonía covid-19 en un hospital referencial

CARTA AL EDITOR

REVISTA DE LA FACULTAD DE MEDICINA HUMANA 2021 - Universidad Ricardo Palma
10.25176/RFMH.v21i4.3821

REHABILITACIÓN RESPIRATORIA OPORTUNA Y PRECOZ EN PACIENTES CON NEUMONÍA COVID-19 EN UN HOSPITAL REFERENCIAL.

TIMELY AND EARLY RESPIRATORY REHABILITATION IN PATIENTS WITH COVID 19 PNEUMONIA IN A REFERRAL HOSPITAL

Antonio O. Morales Avalos1 , Félix K. Llanos Tejada1,2 , Juan A. Salas Lopez1,3 , Aldo R. Casanova Mendoza1,3

1 Servicio de Neumología, Hospital Nacional Dos de Mayo, Lima, Perú
2 Facultad de medicina Humana, Universidad Ricardo Palma, Lima, Perú
3 Facultad de medicina Humana, Universidad Nacional Mayor de San Marcos, Lima, Perú

Mr. Editor

SARS-CoV-2 is a beta-coronavirus of the same subgenus as SARS and MERS viruses, they share the same gene binding receptor, angiotensin converting enzyme (ACE2). (1) The spectrum of disease severity is varied, with the mild form being the most frequent (81%), and severe disease present in 14% of cases, with critical presentation being present in 5%, with a mortality of 2.3%.(2)

The post-pneumonia respiratory sequela caused by beta-Coronaviruses is diffuse alveolar damage with fibrotic lesions; the pathophysiological mechanism is multifactorial, which involves activation of transforming growth factor beta (TGF-β)(3), IL1, IL6, MCP1 and TNF-α secondary to epithelial injury and subsequent inflammation. In addition, exposure to high O2 concentrations and effects of barotrauma, caused by advanced oxygen/ventilatory support, activate the pro-fibrotic TGF-β pathway, resulting in aberrant repair characterized by exaggerated deposition of fibroblasts, myofibroblasts and collagen. Forty-seven percent and 25% of patients who survive moderate to severe COVID-19 pneumonia have decreased carbon monoxide diffusion and predicted total lung capacity, respectively. (4)

Respiratory rehabilitation is a tool used by the clinician to improve the physical and psychological condition and quality of life of people suffering from chronic respiratory disease. It is based on individualized management of the patient by applying muscle training, physiotherapy techniques, education, psychological and nutritional evaluation.(5) Respiratory rehabilitation applied in a timely and early manner reduces dyspnea, relieves anxiety and depression. In addition, it could reduce the occurrence of respiratory complications, improve pulmonary dysfunction and reduce the disability rate of hospitalized patients with a diagnosis of moderate to severe COVID-19 at the end of the acute phase.

For aerobic exercises, an extremity cycloergometer is used, with oxygen support to ensure an O2 saturation (SatO2) greater than 95%, controlled according to the Borg scale and safety heart rate. In addition, it is suggested to use an incentive inspirometer, by flow or volume, considering that the pulmonary sequelae are of restrictive pattern. As for the initial and follow-up evaluation parameters, it is suggested to use the one-minute standing-sitting test or the desaturation test with walking.

Our pulmonology team of a referral hospital for COVID-19 management suggests starting the post-COVID-19 respiratory rehabilitation program as follows (Table 1).

Tabla 1. Early Respiratory Rehabilitation of moderate to severe COVID-19 pneumonia.

Criteria for initiation of early respiratory rehabilitation Prescription of early respiratory rehabilitation exercises COVID-19
  • Basal FiO2 requirement ≤ 40% (binasal cannula).
  • Respiratory rate < 25rpm
  • Rhythmic heart rate < 100lpm
  • Temperature < 38°C
  • SatO2 > 94%.
  • Systolic blood pressure > 90mmHg
  • Mean arterial blood pressure > 70mmHg
  • Time to onset of illness 10 - 14 days
  • Borg resting scale < 3 points
  • Early sitting out of bed.
  • 10 minutes warm-up with isotonic movements of limbs, torso and head; accompanied by diaphragmatic breathing and pursed lip.
  • Start of limb ergometer, monitoring Borg scale (<7 points) and maintain target heart rate (64% - 76% of maximal HR value -defined as 220 - age of patient-).For 30 minutes, continuous or intermittent (progressive goals).
  • *Oxygen support for SatO2 > 94% (pre-during-post exercise).
  • 10-minute cool-down and rest.
  • Start of incentive inspirometer (contraindicated in obstructive pattern): 20 inspirations 1 minute apart (progressive targets).
*PEP device, Threshold IMT as required.
*Duration 1 week in-hospital (re-evaluation), complete two months at home.
*Nutritional evaluation
*Psychological evaluation
Criterios de finalización
  • Borg dyspnea scale > 7 (total score: 10 points).
  • Anterior chest tightness, dizziness, headache, palpitations, diaphoresis, vertiginous syndrome.
  • Sustained desaturation
    • Decrease in SatO2 > 4 points from basal for more than 1 minute.
    • Decrease in O2 < 88% for more than 1 minute.
FiO2: Inspired fraction of O2. SatO2: O2 saturation. Maximum HR: Maximum heart rate. PEP: Positive expiratory pressure.

Authorship contributions: AMA, FLT, JSL y ACM have participated in the preparation of the letter to the editor and the approval of its final version.
Funding sources: Self-funded
Conflicts of Interests: The authors declare that there is no conflict of interest.
Received: 04 May, 2021
Approved: 10 August, 2021


Correspondence: Antonio Omar Morales Avalos
Address: Jr. Huiracocha 1852 Jesús María, Lima – Perú.
Telephone: +51 989112109.
Email: neumorales22@gmail.com


REFERENCES

    1. Ashish Chawla y cols. Computer Vision Syndrome: Darkness under the Shadow of Light. Canadian Association of Radiologists Journal 70 (2019) 5-9.doi.org/10.1016/j.carj.2018.10.005 https://journals.sagepub.com/doi/10.1016/j.carj.2018.10.005
    2. Susan A. Randolph. Computer Vision Syndrome. Workplace Health Saf. 2017 Jul; 65(7):328. doi: 10.1177/2165079917712727. https://pubmed.ncbi.nlm.nih.gov/28628753/
    3. Sheppard AL, Wolffsohn JS. Digital eye strain: prevalence, measurement and amelioration. BMJ Open Ophth 2018;3:e000146. doi:10.1136/bmjophth-2018-000146 https://pubmed.ncbi.nlm.nih.gov/29963645/
    5. INEI. Estadísticas de las tecnologías de información y comunicación en los hogares. INFORME TÉCNICO N° 03 – septiembre 2020. Instituto Nacional de Estadística e Informática - INEI. https://www.inei.gob.pe/media/MenuRecursivo/boletines/informe_tic_abr-may_jun2020.pdf
    6. Vásquez García, Efecto del tiempo de exposición a pantallas de visualización de datos sobre la fatiga visual en digitadores del HNGAI –EsSALUD. UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. FACULTAD DE MEDICINA. UNIDAD DE POST GRADO. https://cybertesis.unmsm.edu.pe/handle/20.500.12672/2080
    7. Fernández Villacorta, Prevalencia del síndrome visual informático en estudiantes universitarios de postgrado de una universidad privada Lima -2019. UNIVERSIDAD PERUANA UNION https://repositorio.upeu.edu.pe/bitstream/handle/UPEU/1153/Germ%C3%A1n_Tesis_Maestro_2017.pdf?sequence=5&isAllowed=y

http://www.scielo.org.pe/scielo.php?script=sci_serial&pid=2223-2516&lng=en&nrm=iso


¿Quieres dejar tu comentario o sugerencia sobre este artículo?

---> CLICK AQUI <---