Modeling and analysis of Covid-19 infections in Peru

Authors

  • Julia Iraida Ortiz-Guizado Facultad de Ingeniería, Departamento Académico de Ciencias Básicas, Universidad Nacional José María Arguedas. Apurímac, Perú https://orcid.org/0000-0001-5626-7992
  • Olegario Marín-Machuca Escuela Profesional de Ingeniería Alimentaria, Facultad de Oceanografía, Pesquería, Ciencias alimentarias y Acuicultura, Grupo de Investigación en Sostenibilidad Ambiental (GISA), Escuela Universitaria de Posgrado. Universidad Nacional Federico Villarreal, Lima, Perú. https://orcid.org/0000-0002-0515-5875
  • Fredy Aníbal Alvarado-Zambrano Laboratorio de Análisis Sensorial de Alimentos, Facultad de Ingeniería de Industrias Alimentarias Universidad Nacional Santiago Antúnez de Mayolo. Huaraz, Perú. https://orcid.org/0000-0002-7213-656X
  • José Eduardo Candela-Díaz Laboratorio de Tecnología de los Alimentos. Escuela Profesional de Ingeniería Alimentaria, Facultad de Oceanografía, Pesquería, Ciencias alimentarias y Acuicultura, Universidad Nacional Federico Villarreal, Lima, Perú. https://orcid.org/0000-0002-4198-5745
  • Carlos Enrique Chinchay-Barragán Escuela Profesional de Ingeniería de Alimentos, Facultad de Ingeniería Pesquera y Alimentos, Universidad Nacional del Callao, Callao, Perú. https://orcid.org/0000-0003-0053-4865
  • Ricardo Arnaldo Alvarado-Zambrano Facultad de Industrias Alimentarias. Departamento de Ciencia y Tecnología. Universidad Nacional Agraria de la Selva. Tingo María, Perú. https://orcid.org/0000-0002-5060-6428
  • Luis Germán Jáuregui-del-Águila Escuela Profesional de Ingeniería Alimentaria, Facultad de Oceanografía, Pesquería, Ciencias alimentarias y Acuicultura, Universidad Nacional Federico Villarreal, Lima, Perú. https://orcid.org/0009-0005-0062-8759
  • Ulert Marín-Sánchez Dirección General de Asuntos Ambientales de Industria (DGAAMI). Ministerio de la Producción (PRODUCE). https://orcid.org/0000-0003-2487-782X
  • Maria del Pilar Rojas-Rueda Escuela de Medicina Humana, Universidad Norbert Wiener, Lima, Perú. https://orcid.org/0000-0003-3812-7579

DOI:

https://doi.org/10.31381/biotempo.v20i2.6191

Keywords:

contagions, COVID-19, estimation, logistic modeling, Peru, validation

Abstract

Describe the COVID-19 pandemic in Peru, carry out mathematical statistical modeling, determine the critical time, the speed with which the pandemic developed and validate the estimated data; have characterized this research; whose objective has been to model and analyze COVID-19 infections in Peru, and compare infected people and estimated infected people; assess the critical time in which the maximum speed of estimated infected people occurs and statistically validate the model. The data on COVID-19 infections until February 24, 2023 has been taken into account; determining that they describe a sigmoidal logistic dispersion; event that was mathematically modeled using the expression , which is a predictive logistic equation. With the predictive mathematical model, the number of people infected and their behavior of COVID-19 in Peru was estimated. Likewise, the speed of people infected with COVID-19 in Peru was evaluated. The critical time (tc) was estimated for which the speed of infected people was maximum, values that are tc=740 days and the maximum speed =6 934.9307 people/day, respectively and the date that there was the maximum speed of infections due to COVID-19 was February 28, 2022. The Pearson correlation coefficient for the time elapsed (t) and the number of infected people (N) in Peru, due to COVID-19, based on 37 cases, was r=-0.79; determining that the relationship between time and the number of infections is real, that the predictive model has a high estimate of the correlated data, that there is a “very strong correlation” between the time elapsed (t) and the number of infected people (N) and that 63% of the variance in N is explained by t. It is concluded that the logistic model can be rigorously applied to pandemic and epidemiological phenomena with high resolution and with a high degree of estimation and, it has been determined that the correlation coefficient has a "very strong negative association" between the number of infections due to COVID-19 and elapsed time in days.

Downloads

Download data is not yet available.

Published

2023-12-19

How to Cite

Ortiz-Guizado, J. I. ., Marín-Machuca, O. ., Alvarado-Zambrano, F. A. ., Candela-Díaz, J. E. ., Chinchay-Barragán, C. E. ., Alvarado-Zambrano, R. A. ., Jáuregui-del-Águila, L. G. ., Marín-Sánchez, U. ., & Rojas-Rueda, M. del P. . (2023). Modeling and analysis of Covid-19 infections in Peru. Biotempo, 20(2), 237–245. https://doi.org/10.31381/biotempo.v20i2.6191