Digital imaging processing for speed determination and traffic flow measurement

Authors

DOI:

https://doi.org/10.31381/perfiles_ingenieria.v2i11.406

Keywords:

Speed determination, traffic flow measurement, Morphologic Operations, Image Labeling, Matlab GUI software

Abstract

This article proposes an image processing technique for measuring vehicular flow and estimating speed at a given point on Paseo de la República Avenue in the city of Lima. To determine vehicular flow and estimate speed, a non-linear digital filtering operation, histogram manipulation, a segmentation operation, and morphological operators of dilation, erosion, opening, closing, and binary image labeling were used. By labeling the images, each vehicle was represented by a white object. This facilitated obtaining the center of mass of the objects labeled in each binary image in order to then compare them with respect to a reference line. This technique was implemented in the GUI of the Matlab software and a group of 12 digital videos captured during daylight hours and for limited periods of time was used. As for the results, the average vehicle flow achieved had a success rate of 90%, while in the case of the approximate average speed a value not exceeding 80 km/h was found.

Downloads

Download data is not yet available.

Author Biographies

Pedro Freddy Huamaní Navarrete, Universidad Ricardo Palma, Lima, Perú.

Electronic Engineer graduated from the Ricardo Palma University (1999), with the degree of Master in Electrical Engineering in the area of ​​Signal Processing and Process Control from the Pontifical Catholic University of Rio de Janeiro, Brazil (1997), and the degree of Doctor in Systems Engineering from the Alas Peruanas University (2013). He has solid experience in the development of research projects in the areas of digital signal and image processing, and artificial intelligence, as well as process automation and control. Extensive academic experience at the undergraduate and graduate level in public and private universities, professional performance in the area of ​​research and development in public and private sector companies, undergraduate and graduate thesis advisor, publications in journals indexed to SCOPUS, article reviewer in international conferences, and participation as a speaker in various academic events. Active member of the IEEE and the College of Engineers of Peru.

José Luis Rojas Vara, Universidad Tecnológica del Perú. Lima, Perú.

Chartered Electronic Engineer specialized in Telecommunications, Networking and Electronic Security, responsible, honest, committed and with great enthusiasm, desire for improvement. Willing to learn new tools that allow me to optimize my performance and professional career.

References

Cabello Hernández, V. (2010). Reconocimiento Inteligente de Flujo Vehicular basado en el Procesamiento de Imágenes. (Tesis de Ingeniero Electrónico, Universidad Michoacana, San Nicolás, Hidalgo-

México). Recuperado de http://bibliotecavirtual.dgb.umich.mx:8083/jspui/bitstream/

/5046/1/CONOCIMIENTOINTELIGENTEDEFLUJOVEHICULAR BASADOENELPROCESAMIENTODEIMANES.pdf

Calderón, F., y Urrego. G. (2008). Conteo Automático de Vehículos. (Tesis de Ingeniero Electrónico, Pontificia Universidad Javeriana de Bogotá, Colombia). Recuperado de http://opencvjaveriana. wikispaces.com/file/view/Conteo+Automatico+De+Vehiculos.pdf

Chávez, A. (2007). Algoritmo que permite el ingreso de vehículos a una vía de alto tráfico y doble sentido, basado en procesamiento de imágenes. (Tesis de Ingeniero Electrónico, Pontificia Universidad Católica de Perú, Perú). Recuperado de http://tesis.pucp.edu.pe/repositorio/bitstream/ handle/123456789/224/CHAVEZ_CORDOVA_ALEX_ALGORITMO_INGRESO_ VEH%C3%8DCULOS.pdf?sequence=1

Cuevas, E., Zaldívar, D., y Pérez, M. (2010). Procesamiento Digital de Imágenes usando Matlab y Simulink. México: Alfaomega.

González, E. (2004). Descriptores de Fourier para Identificación y Posicionamiento de Objetos en Entornos 3D. XXV Jornadas de Automática en Cuba. Recuperado de http://www.ceautomatica.uji.es/ old/actividades/jornadas/XXV/documentos/140-liezgarthg.pdf

González, M., Martínez de Pisón, F., Pemía, V., Alba, F., Castejón, M., Ordieres, J., & Vergara, E. (2006). Técnicas y Algoritmos Básicos de Visión Artificial. España: Editorial de la Universidad de La Rioja. Servicio de Publicaciones.

González, R., Woods, R., and Eddins, S. (2004). Digital Image Processing using Matlab. New Jersey: Prentice Hall.

González, R., Woods, R. and Eddins, S. (2004). Digital Image processing using MATLAB. (s.c.). Dorling Kindersley.

Granados, A. (2006). Medición de flujo vehicular basado en visión artificial. XI Simposio de tratamiento de señales, imágenes y visión artificial. Stsiva 2006, Recuperado de http://gdsproc.com/congreso/granados_stsiva_2006.pdf

Jain, A. (1989). Fundamentals of Digital Image Processing. New Jersey: Editorial Prentice-Hall, Inc.

Marqués, F., e Vieira, H. (1999). Processamento Digital de Imagens. Brasil: Brasport.

Pajares, G., y De la Cruz, J. (2007). Visión por Computador: Imágenes digitales y aplicaciones. (2da ed.). México: RA-MA S.A.

Prieto, M. (2010). Algoritmo para conteo vehicular en tiempo real con base en franjas de interés. (Tesis de Grado para optar el Título de Ingeniero Electrónico, Pontificia Universidad Javeriana de Bogotá, Colombia). Recuperado de http://repository.javeriana.edu.co/bitstream/10554/7034/1/tesis480.pdf

Vieira, H., Marqués, F. (1999). Processamento Digital de Imagens. Brasil: Brasport.

Published

2016-11-23

How to Cite

Huamaní Navarrete, P. F., & Rojas Vara, J. L. (2016). Digital imaging processing for speed determination and traffic flow measurement. Engineering Profiles, 11(11), 67–74. https://doi.org/10.31381/perfiles_ingenieria.v2i11.406

Issue

Section

Artículos Originales