Evaluación de la exposición a campos de radiofrecuencia Wi-Fi en ambientes interiores y exteriores en el campus de la Universidad Ricardo Palma, Lima, Perú, utilizando un exposímetro personal
DOI:
https://doi.org/10.31381/perfilesingenieria.v20i21.6726Keywords:
campo electromagnético, radiación no ionizante, campo de radiofrecuencia, exposímetro, microambienteAbstract
El objetivo de este estudio fue realizar una evaluación de los campos de radiofrecuencia Wi-Fi en el campus de la Universidad Ricardo Palma en el distrito de Surco, Lima, Perú, utilizando exposímetros personales. Para llevarlo a cabo primero se realizó una revisión de la literatura, luego se definió la ubicación de los ambientes. En total se seleccionaron 96 ambientes exteriores y 10 interiores. Posteriormente, se probó el exposímetro incluyendo el software propietario para el procesamiento de datos. La contribución máxima de Wi-Fi 2G y Wi-Fi 5G para ambientes exteriores por bandas de frecuencia principales a la exposición promedio fueron 1.83 x 10-6 y 3.39 x 10-5 W/m2 respectivamente y la contribución máxima de Wi-Fi 2G y Wi-Fi 5G para ambientes interiores por bandas de frecuencia principales a la exposición promedio fueron 1.33 x 10-6 y 2.96 x 10-6 W/m2 respectivamente. Con base en los límites ICNIRP 1998, también se obtuvieron los cocientes de exposición, la contribución máxima de Wi-Fi 2G y Wi-Fi 5G para entornos exteriores por bandas de frecuencia principales a la exposición promedio fueron 1.83 x 10-5 y 3.39 x 10-4 % respectivamente y la contribución máxima de Wi-Fi 2G y Wi-Fi 5G para entornos interiores por bandas de frecuencia principales a la exposición promedio fueron 1.33 x 10-5 y 2.96 x 10-5 W/m2 respectivamente. En conclusión, todas las mediciones realizadas estuvieron muy por debajo de los límites internacionales, para entornos exteriores e interiores el mayor contribuyente a la exposición total fueron los servicios de radiodifusión, el segundo más grande fueron las estaciones base de telefonía móvil, para entornos exteriores el tercero más grande fue Wi-Fi 5G y la exposición de los teléfonos móviles fue muy inferior a la de las estaciones base de telefonía móvil y para entornos interiores el tercero más grande fueron los teléfonos móviles y el último fue Wi-Fi.
Downloads
References
PUNKU, “Reportes. Reportes por servicios. Servicio de Internet,” 2023.
ITU/UN tech agency, “Measuring Digital Development - Facts and Figures 2023 - ITU Hub.”
S. Aït-Aïssa et al., “In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal,” C R Phys, vol. 11, no. 9–10, pp. 592–601, Nov. 2010, doi: 10.1016/j.crhy.2010.10.005.
S. Aït‐Aïssa et al., “In utero and early‐life exposure of rats to a Wi‐Fi signal: Screening of immune markers in sera and gestational outcome,” Bioelectromagnetics, vol. 33, no. 5, pp. 410–420, Jul. 2012, doi: 10.1002/bem.21699.
S. Aït-Aïssa et al., “In Situ Expression of Heat-Shock Proteins and 3-Nitrotyrosine in Brains of Young Rats Exposed to a WiFi Signal In Utero and In Early Life,” Radiat Res, vol. 179, no. 6, pp. 707–716, Jun. 2013, doi: 10.1667/RR2995.1.
H. Bektas, S. Dasdag, and M. S. Bektas, “Comparison of effects of 2.4 GHz Wi-Fi and mobile phone exposure on human placenta and cord blood,” Biotechnology & Biotechnological Equipment, vol. 34, no. 1, pp. 154–162, Jan. 2020, doi: 10.1080/13102818.2020.1725639.
S. Dasdag, M. Taş, M. Z. Akdag, and K. Yegin, “Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions,” Electromagn Biol Med, vol. 34, no. 1, pp. 37–42, Jan. 2015, doi: 10.3109/15368378.2013.869752.
S. Shokri, A. Soltani, M. Kazemi, D. Sardari, and F. B. Mofrad, “Effects of Wi-Fi (2.45 GHz) Exposure on Apoptosis, Sperm Parameters and Testicular Histomorphometry in Rats: A Time Course Study,” Cell J, vol. 17, no. 2, pp. 322–331, 2015.
International Commission on Non-Ionizing Radiation Protection, “Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz),” Health Phys, vol. 118, no. 5, pp. 483–524, May 2020, doi: 10.1097/HP.0000000000001210.
International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection.,” Health Phys, vol. 74, no. 4, pp. 494–522, Apr. 1998.
IEEE, “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” IEEE Std C95.1-1991, pp. 1–76, 1992, doi: 10.1109/IEEESTD.1992.101091.
International Telecommunication Union, “Guidance on complying with limits for human exposure to electromagnetic fields,” no. K.52 (06/2021). pp. 1–44, 2021. [Online]. Available: https://handle.itu.int/11.1002/1000/14724-en?locatt=format:pdf&auth
Ministerio de Transportes y Comunicaciones, “Decreto Supremo n.° 038-2003-MTC.” [Online]. Available: https://www.gob.pe/institucion/mtc/normas-legales/308749-038-2003-mtc
J. Tomitsch, E. Dechant, and W. Frank, “Survey of electromagnetic field exposure in bedrooms of residences in lower Austria,” Bioelectromagnetics, vol. 31, no. 3, pp. 200–208, Apr. 2010, doi: 10.1002/bem.20548.
L. Verloock, W. Joseph, F. Goeminne, L. Martens, M. Verlaek, and K. Constandt, “Temporal 24-hour assessment of radio frequency exposure in schools and homes,” Measurement, vol. 56, pp. 50–57, Oct. 2014, doi: 10.1016/J.MEASUREMENT.2014.06.012.
R. Ramirez-Vazquez, I. Escobar, A. Thielens, and E. Arribas, “Measurements and Analysis of Personal Exposure to Radiofrequency Electromagnetic Fields at Outdoor and Indoor School Buildings: A Case Study at a Spanish School,” IEEE Access, vol. 8, pp. 195692–195702, 2020, doi: 10.1109/ACCESS.2020.3033800.
R. Ramirez-Vazquez et al., “Georeferencing of Personal Exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a University Area,” Int J Environ Res Public Health, vol. 17, no. 6, p. 1898, Mar. 2020, doi: 10.3390/ijerph17061898.
V. Cruz Ornetta et al., “Evaluación de radiaciones no ionizantes de la red Wi-Fi en la Universidad Nacional Mayor de San Marcos,” Theorēma (Lima, Segunda época, En línea), no. 3, pp. 119–132, Jun. 2016, [Online]. Available: https://revistasinvestigacion.unmsm.edu.pe/index.php/Theo/article/view/11982
S. Sagar, B. Struchen, V. Finta, M. Eeftens, and M. Röösli, “Use of portable exposimeters to monitor radiofrequency electromagnetic field exposure in the everyday environment,” Environ Res, vol. 150, pp. 289–298, Oct. 2016, doi: 10.1016/j.envres.2016.06.020.
Techpedia, “Redes inalámbricas.” [Online]. Available: https://techpedia.fel.cvut.cz/html/frame.php?oid=9&pid=1003&finf=
E. G. Del Olmo, “Red ad hoc inalámbrica: qué es, cómo crearla, usos y características.” Apr. 2023. [Online]. Available: https://www.internetizado.com/red-ad-hoc
International Telecommunication Union, “Recommendation ITU-R M.1450-5 Characteristics of broadband radio local area networks,” Apr. 2014. [Online]. Available: https://www.itu.int/rec/recommendation.asp?lang=en&parent=R-REC-M.1450-5-201404-I
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, “Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields.,” IARC Monogr Eval Carcinog Risks Hum, vol. 102, no. Pt 2, pp. 1–460, 2013.
World Health Organization, Establishing a Dialogue on Risks from Electromagnetic Fields. World Health Organization, 2002.
R. Ramirez-Vazquez, I. Escobar, A. Martinez-Plaza, and E. Arribas, “Comparison of personal exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a Spanish university over three years,” Science of The Total Environment, vol. 858, p. 160008, Feb. 2023, doi: 10.1016/J.SCITOTENV.2022.160008.
R. Aminzadeh et al., “On-body calibration and measurements using personal radiofrequency exposimeters in indoor diffuse and specular environments,” Bioelectromagnetics, vol. 37, no. 5, pp. 298–309, Apr. 2016.
C. R. Bhatt, M. Redmayne, B. Billah, M. J. Abramson, and G. Benke, “Radiofrequency-electromagnetic field exposures in kindergarten children,” J Expo Sci Environ Epidemiol, vol. 27, no. 5, pp. 497–504, Sep. 2017, doi: 10.1038/jes.2016.55.
C. R. Bhatt, S. Henderson, C. Brzozek, and G. Benke, “Instruments to measure environmental and personal radiofrequency-electromagnetic field exposures: an update,” Phys Eng Sci Med, vol. 45, no. 3, pp. 687–704, Sep. 2022, doi: 10.1007/s13246-022-01146-y.
L. E. Birks et al., “Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe,” Environ Int, vol. 117, pp. 204–214, Aug. 2018, doi: 10.1016/j.envint.2018.04.026.
MVG, “EME Spy Evolution : Public RF Safety.” [Online]. Available: https://www.mvg-world.com/en/products/rf-safety/public-rf-safety/eme-spy-evolution
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Víctor Cruz Ornetta, Jorge Ubillús Gonzales, Julio González Prado, Milton Marcelo Peña Calero, Manuel Enrique Isaías Pardo Rendon
This work is licensed under a Creative Commons Attribution 4.0 International License.
In the event that the manuscript is approved for its next publication, the authors retain the copyright and assign to the journal the right of publication, edition, reproduction, distribution, exhibition and communication in the country of origin, as well as in the abroad, through print and electronic media in different databases. Therefore, it is established that after the publication of the articles, the authors may make other types of independent or additional agreements for the non-exclusive dissemination of the version of the article published in this journal (publication in books or institutional repositories), provided that it is explicitly indicated that the work has been published for the first time in this journal.
To record this procedure, the author must complete the following forms: