Evaluation of exposure to Wi-Fi radiofrequency fields in indoor and outdoor environments in the Ricardo Palma University campus, Lima, Peru, using a personal exposimeter

Autores/as

DOI:

https://doi.org/10.31381/perfilesingenieria.v20i21.6726

Palabras clave:

electromagnetic field, non-ionizing radiation, radiofrequency field, exposimeter, microenvironment

Resumen

The objective of this study was to make an evaluation of Wi-Fi radiofrequency fields in campus of Ricardo Palma University in the Surco district, Lima, Perú   using personal exposure meters. To carried it out a literature review was first made, then the location of the environments was defined. In total 96 outdoor and 10 indoor environments were selected. Subsequently, the exposure meter including the proprietary software for data processing was tested. The maximum contribution of Wi-Fi 2G and Wi-Fi 5G for outdoor environments by main frequency bands to average exposure were 1.83 x 10-6 and 3.39 x10-5 W/m2 respectively and the maximum contribution of Wi-Fi 2G and Wi-Fi 5G for indoor environments by main frequency bands to average exposure were 1.33 x 10-6 and 2.96 x10-6 W/m2 respectively. Based on the ICNIRP 1998 limits, the exposure quotients were also obtained the maximum contribution of Wi-Fi 2G and Wi-Fi 5G for outdoor environments by main frequency bands to average exposure were 1.83 x 10-5 and 3.39 x10-4 % respectively and the maximum contribution of Wi-Fi 2G and Wi-Fi 5G for indoor environments by main frequency bands to average exposure were 1.33 x 10-5 and 2.96 x10-5 W/m2 respectively. In conclusion, all measurements made were well below international limits, for outdoor and indoor environments the largest contributor to total exposure was broadcasting services, the second largest were mobile phone base stations, for outdoor environments the third largest was Wi-Fi 5G and mobile phone handsets exposure was well below that of mobile phone base stations and for indoor environments the third largest was mobile handsets and the last one was Wi-Fi.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Víctor Manuel Cruz Ornetta, Universidad Ricardo Palma, Lima, Perú.

Profesor Principal de la Universidad Ricardo Palma y de la Universidad Nacional Mayor de San Marcos, Lima, Perú, Doctor en Ciencias Ambientales. Profesor Principal, Facultad de Ingeniería, Universidad Ricardo Palma, Lima, Perú y Profesor Principal, Facultad de Ingeniería Electrónica y Eléctrica, Universidad Nacional Mayor de San Marcos, Lima, Perú.

Jorge Paúl Ubillús Gonzales, Universidad Ricardo Palma, Lima, Perú.

Académico Profesional de Electrónica de la Universidad Ricardo Palma. Ha sido miembro de la Escuela Profesional de Electrónica, jefe del Laboratorio de Sistemas Digitales, jefe de la Oficina de Bienes y Servicios de la Facultad de Ingeniería, director de la Escuela Académico Profesional de Electrónica y director de la Oficina Central de Informática y Cómputo de la Universidad Ricardo Palma.

Julio César González Prado, Universidad Ricardo Palma, Lima, Perú.

Ingeniero electrónico por la Universidad Nacional de Ingeniería maestro en Ciencias de la Electrónica con mención en Control y Automatización por la universidad nacional del callao. Maestro en docencia superior por la Universidad Ricardo Palma. Estudios concluidos de doctorado en Ingeniería Eléctrica por la universidad nacional del callao. Docente de la Universidad Ricardo palma de la carrera de Ingeniería Electrónica e Ingeniería Mecatrónica. Áreas de interés: sistemas digitales y microelectrónica.

Milton Marcelo Peña Calero, Universidad Ricardo Palma, Lima, Perú.

Estudiante del 7mo ciclo de la carrera de Ingeniería Electrónica de la Universidad Ricardo Palma.

Manuel Enrique Isaías Pardo Rendon, Universidad Ricardo Palma, Lima, Perú.

Estudiante del 6to ciclo de la carrera de Ingeniería Electrónica de la Universidad Ricardo Palma.

Citas

PUNKU, “Reportes. Reportes por servicios. Servicio de Internet,” 2023.

ITU/UN tech agency, “Measuring Digital Development - Facts and Figures 2023 - ITU Hub.”

S. Aït-Aïssa et al., “In situ detection of gliosis and apoptosis in the brains of young rats exposed in utero to a Wi-Fi signal,” C R Phys, vol. 11, no. 9–10, pp. 592–601, Nov. 2010, doi: 10.1016/j.crhy.2010.10.005.

S. Aït‐Aïssa et al., “In utero and early‐life exposure of rats to a Wi‐Fi signal: Screening of immune markers in sera and gestational outcome,” Bioelectromagnetics, vol. 33, no. 5, pp. 410–420, Jul. 2012, doi: 10.1002/bem.21699.

S. Aït-Aïssa et al., “In Situ Expression of Heat-Shock Proteins and 3-Nitrotyrosine in Brains of Young Rats Exposed to a WiFi Signal In Utero and In Early Life,” Radiat Res, vol. 179, no. 6, pp. 707–716, Jun. 2013, doi: 10.1667/RR2995.1.

H. Bektas, S. Dasdag, and M. S. Bektas, “Comparison of effects of 2.4 GHz Wi-Fi and mobile phone exposure on human placenta and cord blood,” Biotechnology & Biotechnological Equipment, vol. 34, no. 1, pp. 154–162, Jan. 2020, doi: 10.1080/13102818.2020.1725639.

S. Dasdag, M. Taş, M. Z. Akdag, and K. Yegin, “Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions,” Electromagn Biol Med, vol. 34, no. 1, pp. 37–42, Jan. 2015, doi: 10.3109/15368378.2013.869752.

S. Shokri, A. Soltani, M. Kazemi, D. Sardari, and F. B. Mofrad, “Effects of Wi-Fi (2.45 GHz) Exposure on Apoptosis, Sperm Parameters and Testicular Histomorphometry in Rats: A Time Course Study,” Cell J, vol. 17, no. 2, pp. 322–331, 2015.

International Commission on Non-Ionizing Radiation Protection, “Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz),” Health Phys, vol. 118, no. 5, pp. 483–524, May 2020, doi: 10.1097/HP.0000000000001210.

International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection.,” Health Phys, vol. 74, no. 4, pp. 494–522, Apr. 1998.

IEEE, “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” IEEE Std C95.1-1991, pp. 1–76, 1992, doi: 10.1109/IEEESTD.1992.101091.

International Telecommunication Union, “Guidance on complying with limits for human exposure to electromagnetic fields,” no. K.52 (06/2021). pp. 1–44, 2021. [Online]. Available: https://handle.itu.int/11.1002/1000/14724-en?locatt=format:pdf&auth

Ministerio de Transportes y Comunicaciones, “Decreto Supremo n.° 038-2003-MTC.” [Online]. Available: https://www.gob.pe/institucion/mtc/normas-legales/308749-038-2003-mtc

J. Tomitsch, E. Dechant, and W. Frank, “Survey of electromagnetic field exposure in bedrooms of residences in lower Austria,” Bioelectromagnetics, vol. 31, no. 3, pp. 200–208, Apr. 2010, doi: 10.1002/bem.20548.

L. Verloock, W. Joseph, F. Goeminne, L. Martens, M. Verlaek, and K. Constandt, “Temporal 24-hour assessment of radio frequency exposure in schools and homes,” Measurement, vol. 56, pp. 50–57, Oct. 2014, doi: 10.1016/J.MEASUREMENT.2014.06.012.

R. Ramirez-Vazquez, I. Escobar, A. Thielens, and E. Arribas, “Measurements and Analysis of Personal Exposure to Radiofrequency Electromagnetic Fields at Outdoor and Indoor School Buildings: A Case Study at a Spanish School,” IEEE Access, vol. 8, pp. 195692–195702, 2020, doi: 10.1109/ACCESS.2020.3033800.

R. Ramirez-Vazquez et al., “Georeferencing of Personal Exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a University Area,” Int J Environ Res Public Health, vol. 17, no. 6, p. 1898, Mar. 2020, doi: 10.3390/ijerph17061898.

V. Cruz Ornetta et al., “Evaluación de radiaciones no ionizantes de la red Wi-Fi en la Universidad Nacional Mayor de San Marcos,” Theorēma (Lima, Segunda época, En línea), no. 3, pp. 119–132, Jun. 2016, [Online]. Available: https://revistasinvestigacion.unmsm.edu.pe/index.php/Theo/article/view/11982

S. Sagar, B. Struchen, V. Finta, M. Eeftens, and M. Röösli, “Use of portable exposimeters to monitor radiofrequency electromagnetic field exposure in the everyday environment,” Environ Res, vol. 150, pp. 289–298, Oct. 2016, doi: 10.1016/j.envres.2016.06.020.

Techpedia, “Redes inalámbricas.” [Online]. Available: https://techpedia.fel.cvut.cz/html/frame.php?oid=9&pid=1003&finf=

E. G. Del Olmo, “Red ad hoc inalámbrica: qué es, cómo crearla, usos y características.” Apr. 2023. [Online]. Available: https://www.internetizado.com/red-ad-hoc

International Telecommunication Union, “Recommendation ITU-R M.1450-5 Characteristics of broadband radio local area networks,” Apr. 2014. [Online]. Available: https://www.itu.int/rec/recommendation.asp?lang=en&parent=R-REC-M.1450-5-201404-I

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, “Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields.,” IARC Monogr Eval Carcinog Risks Hum, vol. 102, no. Pt 2, pp. 1–460, 2013.

World Health Organization, Establishing a Dialogue on Risks from Electromagnetic Fields. World Health Organization, 2002.

R. Ramirez-Vazquez, I. Escobar, A. Martinez-Plaza, and E. Arribas, “Comparison of personal exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a Spanish university over three years,” Science of The Total Environment, vol. 858, p. 160008, Feb. 2023, doi: 10.1016/J.SCITOTENV.2022.160008.

R. Aminzadeh et al., “On-body calibration and measurements using personal radiofrequency exposimeters in indoor diffuse and specular environments,” Bioelectromagnetics, vol. 37, no. 5, pp. 298–309, Apr. 2016.

C. R. Bhatt, M. Redmayne, B. Billah, M. J. Abramson, and G. Benke, “Radiofrequency-electromagnetic field exposures in kindergarten children,” J Expo Sci Environ Epidemiol, vol. 27, no. 5, pp. 497–504, Sep. 2017, doi: 10.1038/jes.2016.55.

C. R. Bhatt, S. Henderson, C. Brzozek, and G. Benke, “Instruments to measure environmental and personal radiofrequency-electromagnetic field exposures: an update,” Phys Eng Sci Med, vol. 45, no. 3, pp. 687–704, Sep. 2022, doi: 10.1007/s13246-022-01146-y.

L. E. Birks et al., “Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe,” Environ Int, vol. 117, pp. 204–214, Aug. 2018, doi: 10.1016/j.envint.2018.04.026.

MVG, “EME Spy Evolution : Public RF Safety.” [Online]. Available: https://www.mvg-world.com/en/products/rf-safety/public-rf-safety/eme-spy-evolution

Descargas

Publicado

2024-06-30

Cómo citar

Cruz Ornetta, V. M. ., Ubillús Gonzales, J. P., González Prado, J. C., Peña Calero, M. M., & Pardo Rendon, M. E. I. . (2024). Evaluation of exposure to Wi-Fi radiofrequency fields in indoor and outdoor environments in the Ricardo Palma University campus, Lima, Peru, using a personal exposimeter. Perfiles De Ingeniería, 20(21), 111–135. https://doi.org/10.31381/perfilesingenieria.v20i21.6726

Artículos similares

También puede {advancedSearchLink} para este artículo.