Modelamiento matemático de flujos utilizando trazadores en plantas de tratamiento de aguas

Autores/as

DOI:

https://doi.org/10.31381/perfilesingenieria.v18i18.5400

Palabras clave:

Tracer, Non-stochastic flow, RTD, settling tank, Water treatment plant, salt

Resumen

Radiotracer experiments have been conducted in an industrial battery of water treatment plant. The flow behavior is complex because it includes the superposition of a stochastic flow, which is intrinsic to the process itself, and of a non-stochastic flow induced by local strong currents at the surface. These currents are non-stochastic because they are different from one installation to another one even if all of them are identical. A general model has been proposed to simulate the whole behavior of the process. The model is composed of two parts: the first one, describes the stochastic flow behavior, and is the same for each unit; the second one is adapted to represent the turbulent shortcuts at the surface of some units. The parameters of stochastic part have been determined to be consistent with the physical description of the process. The value of the Peclet number of the shortcut is a monotonic function of the flow rate. Despite remaining uncertainties due both to the complexity of the flow and to specific problems of tracer measurements in large industrial water treatment plant, this paper proposes an extension of the applications of tracer experiments and interpretation.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Carlos Sebastián Calvo, Universidad Ricardo Palma, Lima, Perú.

Docente de la Universidad Ricardo Palma.

 

 

O. Lobato , Universidad Nacional de Ingeniería, Lima, Perú.

Facultad de Ciencias.

Citas

Buffham, B.A., Kropholler, H.W., 1981. Residence-time distributions for systems having many connections with their environments. Ind. Eng. Chem. Fundam. 20, 102–104.

Berne, Ph., Thereska, J., 2004. Simulation of a radiotracer experiment by flow and detection-chain modeling: a first step towards better interpretation. Appl. Radiat. Isot. 60, 855–861.

Behrens H. - Z. Deutsch, Geol. Ges."Ëine Verbesserte Nachweismethode fuer Fluoreszenzindikatoren und ihre Anwendung zur Feststellung von Fliesswegen im Grundwasser" - Hannover - 1973.

Alex Diachisin M."Dye Dispersion Studies", Journal of the Sanitary Engineering Division. - Proceedings of the American Society of Civil Engineers.

Fan, L.T. S.T., Stochastic modeling of transient residence-time distributions during start-up. Chem. Eng. Sci. 50 (2), 211–221.

Furman, L., Leclerc, J.P., Stegowski, Z., 2005. Tracer investigation of a packed column under variable flow. Chem. Eng. Sci. 60, 3043–3048.

IAEA “Radiotracer Technology for Engineering Unit Operation Studies and Unit Processes Optimization”, Technical Report, Krakow-Poland, 1999.

João S.F. Roldão, Guilherme Goretkin.Danckwerts "Calibracão de Modelos matemáticos Aplicaveis a Simulacão do Transporte e Dispersão em Águas Costeiras. Uso de Traçadores Fluorescentes”, P.V., 1953.

Kim, H.S., Shin, M.S., Jang, D.S., Jung, S.H., Jin, J.H., 2005. Study of flow characteristics in a secondary clarifier by numerical simulation and radioisotope tracer technique. Appl. Radiat. Isot. 63, 519–526.

Leclerc J.-P., Grevillot G. “Traceurs et méthodes de traçages”, Récents Progrès en Génie des procédés, 61, Vol. 12, 1998.

Leclerc J.-P. “Traceurs and tracing methods”, Récents Progrès en Génie des procédés, 79, Vol. 15, 2001.

Niemi, A.J., Zenger, K., Thereska, J., Martinez, J.G., 1998. Tracer testing of processes under variable flow and volume. Nukleonika 43 (1), 73–94.

Plata, A. (1972). Isótopos en Hidrología. Editorial Alambra. Madrid.

Potier, O., Leclerc, J.-P., Pons, M.-N., 2005. Influence of geometrical and operating parameters on the axial dispersion in an aerated channel reactor. Water Res. 39, 4454-4462.

Projeto COPPETEC ET – 154138, "Determinacão dos Parámetros que regem a dispersão das Aguas de Refrigeracão de Angra I, lancados na Enseada de Piraguara de Fora. Relatorio - COPPE / UFRJ - 198

Rodríguez, C. O. (1973). Determination of aquifer parameters with radiotracers, Submited as part of the first term, M. Sc. course requirements in hydrogeology. 33 p., 10 figs. University of London, London.

Roche, N., Bendounan, R., Prost, C., 1994. Modelisation de l’hydrodynamique d’un de´canteur primaire de station depuration. Rev. Sci. Eau 7, 153–167.

Shen, B.C., Chou 1995, Continuous flow systems, distribution of residence times. Chem. Eng. Sci. 2 (1), 1–13.

Sebastián C., Maghella, G., Mamani, E. “Evaluación de las unidades de tratamiento de agua, utilizando técnicas de trazadores radiactivos”. Informe Técnico IPEN, Lima -Perú, 1998.

Thereska, J. “Radiotracer Methodology and Technology”. - IAEA, NAPC, Industrial Applications and Chemistry Section, Vienna-Austria, February 1999.

Thyn, J., Zitny, R., 2002. Analysis and diagnostics of industrial processes by radiotracers and radioistope sealed sources II. Department of Process Engineering, Faculty Mechanical Engineering, Praha, CTU, 2002.

Thyn, J., Zitny, R., Kluson, J., Cechak, T., 2000. Analysis and diagnostics of industrial processes by radiotracers and radioistope sealed sources I. Department of Process Engineering, Faculty of Mechanical Engineering, CTU, Praha, 2000

Descargas

Publicado

2022-12-30

Cómo citar

Sebastián Calvo, C., & Lobato , O. . (2022). Modelamiento matemático de flujos utilizando trazadores en plantas de tratamiento de aguas. Perfiles De Ingeniería, 18(18), 75–90. https://doi.org/10.31381/perfilesingenieria.v18i18.5400

Número

Sección

Ingeniería Industrial