Mathematical modeling of flows by means of tracers in water treatment plants

Authors

DOI:

https://doi.org/10.31381/perfilesingenieria.v18i18.5400

Keywords:

Tracer, Non-stochastic flow, RTD, settling tank, Water treatment plant, salt

Abstract

Se han realizado experimentos con trazadores en una batería industrial de una planta de

tratamiento de agua. El comportamiento del flujo es complejo porque incluye la superposición de un flujo estocástico, que es intrínseco al proceso mismo, y de un flujo no estocástico inducido por fuertes corrientes locales en la superficie. Estas corrientes no son estocásticas porque son diferentes de una instalación a otra, aunque todas sean idénticas. Se ha propuesto un modelo general para simular todo el comportamiento del proceso. El modelo se compone de dos partes: la primera, describe el comportamiento del flujo estocástico, y es el mismo para cada unidad; el segundo está adaptado para representar los atajos turbulentos en la superficie de algunas unidades. Se ha determinado que los parámetros de la parte estocástica son consistentes con la descripción física del proceso. El valor del número de Peclet del atajo es una función monótona del caudal. A pesar de las incertidumbres restantes debido tanto a la complejidad del flujo como a los problemas específicos de las mediciones de trazadores en grandes plantas de tratamiento de aguas industriales, este artículo propone una extensión de las aplicaciones de los experimentos e interpretación de trazadores.

Downloads

Download data is not yet available.

Author Biographies

Carlos Sebastián Calvo, Universidad Ricardo Palma, Lima, Perú.

Professor at Ricardo Palma University.

O. Lobato , Universidad Nacional de Ingeniería, Lima, Perú.

Facultad de Ciencias.

References

Buffham, B.A., Kropholler, H.W., 1981. Residence-time distributions for systems having many connections with their environments. Ind. Eng. Chem. Fundam. 20, 102–104.

Berne, Ph., Thereska, J., 2004. Simulation of a radiotracer experiment by flow and detection-chain modeling: a first step towards better interpretation. Appl. Radiat. Isot. 60, 855–861.

Behrens H. - Z. Deutsch, Geol. Ges."Ëine Verbesserte Nachweismethode fuer Fluoreszenzindikatoren und ihre Anwendung zur Feststellung von Fliesswegen im Grundwasser" - Hannover - 1973.

Alex Diachisin M."Dye Dispersion Studies", Journal of the Sanitary Engineering Division. - Proceedings of the American Society of Civil Engineers.

Fan, L.T. S.T., Stochastic modeling of transient residence-time distributions during start-up. Chem. Eng. Sci. 50 (2), 211–221.

Furman, L., Leclerc, J.P., Stegowski, Z., 2005. Tracer investigation of a packed column under variable flow. Chem. Eng. Sci. 60, 3043–3048.

IAEA “Radiotracer Technology for Engineering Unit Operation Studies and Unit Processes Optimization”, Technical Report, Krakow-Poland, 1999.

João S.F. Roldão, Guilherme Goretkin.Danckwerts "Calibracão de Modelos matemáticos Aplicaveis a Simulacão do Transporte e Dispersão em Águas Costeiras. Uso de Traçadores Fluorescentes”, P.V., 1953.

Kim, H.S., Shin, M.S., Jang, D.S., Jung, S.H., Jin, J.H., 2005. Study of flow characteristics in a secondary clarifier by numerical simulation and radioisotope tracer technique. Appl. Radiat. Isot. 63, 519–526.

Leclerc J.-P., Grevillot G. “Traceurs et méthodes de traçages”, Récents Progrès en Génie des procédés, 61, Vol. 12, 1998.

Leclerc J.-P. “Traceurs and tracing methods”, Récents Progrès en Génie des procédés, 79, Vol. 15, 2001.

Niemi, A.J., Zenger, K., Thereska, J., Martinez, J.G., 1998. Tracer testing of processes under variable flow and volume. Nukleonika 43 (1), 73–94.

Plata, A. (1972). Isótopos en Hidrología. Editorial Alambra. Madrid.

Potier, O., Leclerc, J.-P., Pons, M.-N., 2005. Influence of geometrical and operating parameters on the axial dispersion in an aerated channel reactor. Water Res. 39, 4454-4462.

Projeto COPPETEC ET – 154138, "Determinacão dos Parámetros que regem a dispersão das Aguas de Refrigeracão de Angra I, lancados na Enseada de Piraguara de Fora. Relatorio - COPPE / UFRJ - 198

Rodríguez, C. O. (1973). Determination of aquifer parameters with radiotracers, Submited as part of the first term, M. Sc. course requirements in hydrogeology. 33 p., 10 figs. University of London, London.

Roche, N., Bendounan, R., Prost, C., 1994. Modelisation de l’hydrodynamique d’un de´canteur primaire de station depuration. Rev. Sci. Eau 7, 153–167.

Shen, B.C., Chou 1995, Continuous flow systems, distribution of residence times. Chem. Eng. Sci. 2 (1), 1–13.

Sebastián C., Maghella, G., Mamani, E. “Evaluación de las unidades de tratamiento de agua, utilizando técnicas de trazadores radiactivos”. Informe Técnico IPEN, Lima -Perú, 1998.

Thereska, J. “Radiotracer Methodology and Technology”. - IAEA, NAPC, Industrial Applications and Chemistry Section, Vienna-Austria, February 1999.

Thyn, J., Zitny, R., 2002. Analysis and diagnostics of industrial processes by radiotracers and radioistope sealed sources II. Department of Process Engineering, Faculty Mechanical Engineering, Praha, CTU, 2002.

Thyn, J., Zitny, R., Kluson, J., Cechak, T., 2000. Analysis and diagnostics of industrial processes by radiotracers and radioistope sealed sources I. Department of Process Engineering, Faculty of Mechanical Engineering, CTU, Praha, 2000

Published

2022-12-30

How to Cite

Sebastián Calvo, C., & Lobato , O. . (2022). Mathematical modeling of flows by means of tracers in water treatment plants. Engineering Profiles, 18(18), 75–90. https://doi.org/10.31381/perfilesingenieria.v18i18.5400

Issue

Section

Ingeniería Industrial