LPG Batch Oven with PID control for the automation of the electrostatic paint curing process.

Authors

DOI:

https://doi.org/10.31381/perfilesingenieria.v20i21.6640

Keywords:

electrostatic painting, automation, electrostatic painting, industrial oven, PID controller, automation, electrostatic painting, industrial oven, infrared burner

Abstract

This article presents the improvement of the surface coating process with electrostatic painting by manufacturing an LPG batch-type curing oven with a working volume of 20 m³. The structure was manufactured with 3/16” x 2” structural angles, sandwich panels made of 0.6 mm and 1.0 mm galvanized steel sheets and with a 2” thick wool interior as insulation. 6 LPG catalytic infrared burners were used with a total power of 65.4 kW/h, with which the temperature of 180 °C was reached in 20 minutes with maximum load. A graphical interface was designed with a touch screen. A Raspberry Pi 3B+ was used to run the control and monitoring software developed in Python. Industrial PID temperature controllers and three-wire PT-100 sensors were used. Mathematical modeling of the oven was carried out to obtain the transfer function and tuning constants of the PID controller. Nine tests were carried out to ensure proper operation of the oven. Sample sheets with thicknesses from 90 µm to 106 µm were painted and cured, which guarantees the durability of the applied paint. Finally, adhesion, scratching, bending and sanding tests were carried out, obtaining optimal results in each one.

Downloads

Download data is not yet available.

Author Biographies

Ricardo John Palomares Orihuela, Universidad Ricardo Palma, Lima, Perú.

Professor at the Professional School of Mechatronic Engineering at Ricardo Palma University. Mechatronic Engineer from the National University of Engineering, PhD in Educational Sciences, Master in Educational Sciences with a major in University Teaching and a Master in Electronic Sciences with a major in Biomedical Engineering. Senior Member IEEE. Professional Member of RAS, EMBS, ComSoc and EduSoc - IEEE. RENACYT level V researcher.

Enzo Pietro Jesús Morán Ugarelli, Universidad Ricardo Palma, Lima, Perú.

Mechatronics Engineer graduated from Ricardo Palma University. Currently working as a preventive maintenance analyst for mining machinery.

Rafael Marcel Sánchez Soto, Universidad Ricardo Palma, Lima, Perú.

Mechatronics Engineer from Ricardo Palma University. Project engineer with consulting in automated process improvement at AGP PERU, with advanced specialization in Autodesk Inventor, retail project manager at HMY PERU and General Manager at Maker Asociados SAC.

References

Aduanas. (s.f.). Consulta por Importador/Exportador. http://www.aduanet.gob.pe/cl-ad-itconsultadwh/ieITS01Alias?accion=consultar&CG_consulta=1

Åström, K. (2009). Control PID avanzado. Madrid, España: Pearson Educación S. A.

Brucart, E. B. (1987). GAS NATURAL Caracteristicas, distribucion y aplicaciones industriales. Barcelona: Editores tecnicos asociados.

Callejón Ferre, Á. J. (2009). Iintalacioens de gas en el sector industrial, Agricola, urbano y domestico. Almeria: Universidad de Almeria.

Castaño Giraldo, S., Hernández Gómez, D., & Gallo Blandón, J. (Julio de 2013). Control y monitoreo de temperatura para un horno de curado de prendas índigo utilizando lógica difusa y controles PI. Revista Politécnica ISSN, 69-81.

Çengel, Y. (2007). Transferencia de calor y masa, un enfoque práctico. Reno: McGraw-Hill Companies, Inc.

García Higuera, A. (2005). El control automático en la industria. Cuenca: Ediciones de la Universidad de Castilla - La Mancha.

Lizarraga, G. (2016). Diseño de línea para pintado electrostático. Córdoba: Universidad Nacional de Córdoba.

Logicbus. (17 de 06 de 2019). Protocolos de comunicación industriales. https://www.logicbus.com.mx/blog/protocolos-de-comunicacion-industriales/

Montenegro, S., & Tixe, T. (2012). Mejora del proceso de pintura electrostática de la planta de producción “SUMAR”. Quito: Universidad Central de Ecuador.

Montoya, J., Orozco, C., & González, H. (Abril de 2011). Optimización energética de un horno de secado de piezas de PRFV implementando PML. Scientia Et Technica, 17(47), 307-312.

Ogata, K. (2010). Ingeniería de control moderna (5 ed.). Madrid, España: PEARSON EDUCACIÓN, S.A.

ONSEMI. (s.f.). MMBT3904L DATASHEET. https://www.mouser.pe/datasheet/2/308/1/MMBT3904LT1_D-2316262.pdf

Pintura Para. (17 de julio de 2016). Pintura electrostática. https://www.pintura-para.com/pintura-electrostatica/

Ponsa, P., & Granollers, A. (2007). Diseño y automatización industrial. Madrid: Pirámide.

Ramos, I. (2020). Diseño energético de un horno piloto de curado para tratamiento de acabado de pintura electrostática en superficies metálicas y MDF. Lima: Pontificia Universidad Católica del Perú.

Rougeron, C. (1977). Aislamiento acústico y termico en la construcción. Barcelona: Editores Técnicos Asociados, S.A.

Senner, A. (1994). Principios de electrorecnia. Barcelona: Editorial Reverté S.A.

Silge Electrónica. (s.f.). Silge. https://blog.silge.com.ar/: https://blog.silge.com.ar/soluciones-para-el-control-de-temperatura-industrial

Trinks, W. (2004). Industrial Furnaces (6 ed.). New Jersey: John Wiley & Sons, Inc.

Yarasca, J., & Espinoza, M. (2015). Propuesta de implementación de un sistema de pintura electrostática para piezas metálicas utilizadas en tableros y celdas eléctricas. Lima: Universidad Ricardo Palma.

Published

2024-06-30

How to Cite

Palomares Orihuela, R. J., Morán Ugarelli, E. P. J., & Sánchez Soto, R. M. . (2024). LPG Batch Oven with PID control for the automation of the electrostatic paint curing process. Engineering Profiles, 20(21), 180–196. https://doi.org/10.31381/perfilesingenieria.v20i21.6640

Most read articles by the same author(s)