Unraveling the neurological enigma: central diabetes insipidus and extrapontine osmotic demyelination caused by covid-19 case report

Desentrañando el enigma neurológico: Diabetes insípida central y desmielinización osmótica extrapontina causada por covid-19-reporte de caso | 解开神经谜团:由 COVID-19 引起的中枢性尿崩症和脑桥外渗性脱髓鞘病变病例报告

Authors

  • Mateo Aguirre-Flórez Universidad Tecnológica de Pereira
  • Laura Alejandra Jímenez-Osorio Universidad Tecnológica de Pereira
  • Bayron David García-Pasichana Universidad Tecnológica de Pereira
  • Harold Sebastián Castillo-Pastuzan Universidad Tecnológica de Pereira
  • Juan José Gutiérrez-Patermina Universidad Tecnológica de Pereira

DOI:

https://doi.org/10.25176/RFMH.v24i4.6523

Keywords:

COVID-19, SARS-CoV-2, Endocrine System, Diabetes Insipidus

Abstract

Background: COVID-19 infection produces various symptoms and affects multiple systems, including the endocrine system. Lesions have been documented at the hypothalamic and pituitary axis, hypothetically explained by the presence of angiotensin II receptors in these structures and by direct immune-mediated viral lesions. These manifest with electrolyte and hormonal alterations.

Case report: We present the case of a female patient who, after infection by SARS-CoV-2, presented with hypernatremia refractory to conventional management. Her diagnostic study documented hyposthenuria, high serum osmolarity, and low urinary osmolarity. The condition was corrected with desmopressin, leading to a diagnosis of central diabetes insipidus. A brain MRI revealed a lesion in the pituitary gland, confirming the clinical findings. The only etiological hypothesis for this lesion is its association with SARS-CoV-2 infection.

Conclusions: Understanding the complications secondary to COVID-19 infection in the endocrine setting is essential for early diagnosis and targeted treatment. This knowledge can significantly improve the quality of life for patients affected by such complications.

 

Downloads

Download data is not yet available.

Author Biographies

Mateo Aguirre-Flórez, Universidad Tecnológica de Pereira

Grupo Investigación de Medicina Crítica y Cuidados Intensivos GIMCCI

Laura Alejandra Jímenez-Osorio, Universidad Tecnológica de Pereira

Grupo Investigación de Medicina Crítica y Cuidados Intensivos GIMCCI

Bayron David García-Pasichana, Universidad Tecnológica de Pereira

Grupo Investigación de Medicina Crítica y Cuidados Intensivos GIMCCI

Harold Sebastián Castillo-Pastuzan, Universidad Tecnológica de Pereira

Grupo Investigación de Medicina Crítica y Cuidados Intensivos GIMCCI

Juan José Gutiérrez-Patermina, Universidad Tecnológica de Pereira

Grupo Investigación de Medicina Crítica y Cuidados Intensivos GIMCCI

References

Zimmer MA, Zink AK, Weißer CW, Vogt U, Michelsen A, Priebe HJ, et al. Hypernatremia-A

Manifestation of COVID-19: A Case Series. A&A Pract. 2020;14(9):e01295. DOI:

1213/XAA.0000000000001295

Hirsch JS, Uppal NN, Sharma P, Khanin Y, Shah HH, Malieckal DA, et al. Prevalence and

outcomes of hyponatremia and hypernatremia in patients hospitalized with COVID-19.

Nephrol Dial Transplant. 2021;36(6):1135–8. DOI: 10.1093/ndt/gfab067

https://www.nature.com/articles/s41586-020-2180-5. DOI: 10.1038/s41586-020-2180-5

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptorbinding domain bound to the ACE2 receptor. Nat 2020 5817807 [Internet]. 2020 Mar 30

[cited 2022 Feb 14];581(7807):215–20. Available from:

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2

(ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target.

Intensive Care Med [Internet]. 2020 Apr 1 [cited 2022 Feb 14];46(4):586. DOI:

1007/s00134-020-05985-9

Kai H, Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS

inhibitors—lessons from available evidence and insights into COVID-19. Hypertens Res

[Internet]. 2020 Jul 1 [cited 2022 Feb 14];43(7):1. DOI: https://doi.org/10.1038/s41440-020-

-8

Shah MK, Mandayam S, Adrogué HJ. Osmotic Demyelination Unrelated to Hyponatremia.

Am J Kidney Dis. 2018;71(3):436–40. DOI: 10.1053/j.ajkd.2017.10.010

Fountain JH, Lappin SL. Physiology, Renin Angiotensin System. StatPearls [Internet]. 2021

Jul 22 [cited 2022 Feb 14].

Misgar RA, Rasool A, Wani AI, Bashir MI. Central diabetes insipidus (Infundibuloneuro

hypophysitis): A late complication of COVID-19 infection. J Endocrinol Invest [Internet].

;44(12):2855–6. DOI: 10.1007/s40618-021-01627-z

Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 Expression in Pancreas May Cause

Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol [Internet]. 2020

Aug 1 [cited 2022 Feb 14];18(9):2128. DOI: 10.1016/j.cgh.2020.04.040

Marazuela M, Giustina A, Puig-Domingo M. Endocrine and metabolic aspects of the

COVID-19 pandemic. Rev Endocr Metab Disord [Internet]. 2020 Dec 1 [cited 2022 Feb

;21(4):495. DOI: 10.1007/s11154-020-09569-2

Chiloiro S, Capoluongo ED, Tartaglione T, Giampietro A, Bianchi A, Giustina A, et al. The

Changing Clinical Spectrum of Hypophysitis. Trends Endocrinol Metab [Internet]. 2019 Sep

[cited 2022 Feb 14];30(9):590–602. DOI: 10.1016/j.tem.2019.06.004

Leow MKS, Kwek DSK, Ng AWK, Ong KC, Kaw GJL, Lee LSU. Hypocortisolism in survivors of

severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf) [Internet]. 2005 Aug [cited

Feb 14];63(2):197. DOI: 10.1111/j.1365-2265.2005.02325.x

Seay NW, Lehrich RW, Greenberg A. Diagnosis and Management of Disorders of Body

Tonicity—Hyponatremia and Hypernatremia: Core Curriculum 2020. Am J Kidney Dis

[Internet]. 2020 Feb 1 [cited 2022 Feb 14];75(2):272–86. DOI: 10.1053/j.ajkd.2019.07.014

Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored. J

Endocrinol Investig 2020 437 [Internet]. 2020 May 2 [cited 2022 Feb 14];43(7):1027–31. DOI:

1007/s40618-020-01276-8

Rajevac H, Bachan M, Khan Z. DIABETES INSIPIDUS AS A SYMPTOM OF COVID-19

INFECTION: CASE REPORT. Chest [Internet]. 2020 Oct 1 [cited 2022 Feb 14];158(4):A2576.

DOI: 10.1016/j.chest.2020.09.172

Martin RJ. Central pontine and extrapontine myelinolysis: The osmotic demyelination

syndromes. Neurol Pract. 2004 Sep;75(3). DOI: 10.1136/jnnp.2004.045906

Sindhu DM, Holla V V., Prasad S, Kamble N, Netravathi M, Yadav R, et al. The Spectrum of

Movement Disorders in Cases with Osmotic Demyelination Syndrome. Mov Disord Clin

Pract. 2021;8(6):875–84. DOI: 10.1002/mdc3.13250

Norenberg MD. Central pontine myelinolysis: Historical and mechanistic considerations.

Metab Brain Dis [Internet]. 2010 Mar 25 [cited 2022 Feb 14];25(1):97–106. DOI:

1007/s11011-010-9175-0

Soupart A, Penninckx R, Namias B, Stenuit A, Perier O, Decaux G. Brain Myelinolysis

Following Hypernatremia in Rats. J Neuropathol Exp Neurol [Internet]. 1996 Jan 1 [cited

Feb 14];55(1):106–13. DOI: 10.1097/00005072-199601000-00011

Han MJ, Kim DH, Kim YH, Yang IM, Park JH, Hong MK. A case of osmotic demyelination

presenting with severe hypernatremia. Electrolyte Blood Press. 2015;13(1):30–4. DOI:

5049/EBP.2015.13.1.30

Published

2024-10-31

How to Cite

Aguirre-Flórez, M., Jímenez-Osorio, L. A., García-Pasichana, B. D., Castillo-Pastuzan, H. S., & Gutiérrez-Patermina, J. J. (2024). Unraveling the neurological enigma: central diabetes insipidus and extrapontine osmotic demyelination caused by covid-19 case report: Desentrañando el enigma neurológico: Diabetes insípida central y desmielinización osmótica extrapontina causada por covid-19-reporte de caso | 解开神经谜团:由 COVID-19 引起的中枢性尿崩症和脑桥外渗性脱髓鞘病变病例报告. Revista De La Facultad De Medicina Humana, 24(4), 255–259. https://doi.org/10.25176/RFMH.v24i4.6523