MORTALIDAD DE PACIENTES HOSPITALIZADOS POR COVID-19 EN MÉXICO, REVISIÓN SISTEMÁTICA
MORTALITY OF PATIENTS HOSPITALIZED BY COVID-19 IN MEXICO, SYSTEMATIC REVIEW
DOI:
https://doi.org/10.25176/RFMH.v23i4.5877Palabras clave:
COVID 19, diabetes, hipertensiòn, obesidad, México, MortalidadResumen
Introducción
Desde el inicio de la pandemia, México fue de los países que presentó tasas de mortalidad más altas por COVID 19.
Objetivo
Determinar si la diabetes Mellitus 2, hipertensión arterial y obesidad incrementan que incrementaron la mortalidad en pacientes con diagnóstico de COVID-19 que requirieron hospitalización en México.
Método
Revisión sistemática en Pubmed MeSH, Web of Science, Lilas, Scielo y Google Scholar con los términos MESH COVID-19, SARS-COV2, Coronavirus, y México de los años 2020 y 2021, en inglés o español. Dos revisores seleccionaron los estudios, dos revisores adicionales participaron en el análisis de los estudios.
Resultados
Se incluyeron 73 estudios realizados en México del 2020 al 2021 con información obtenida de las bases de datos del Sistema Nacional de Vigilancia epidemiológica de México. Con un promedio de edad de 52,9 años ±13,27, el 64 % de los pacientes incluidos fueron mujeres, la patología más prevalente fue la obesidad con un 24.23% (IQR 17.74-22.28 = 22%), seguida de la hipertensión arterial 22.23% (IQR 17.98-23.44 = 22%) y finalmente la Diabetes mellitus con un 18.10% (rango intercuartílico 9.39 -14.61 = 22%). En general fue reportada una tasa de mortalidad de 16.76 (IQR 9-39-14.61). El 71% de los estudios (52), no reportaron la mortalidad específica relacionada con las comorbilidades.
Conclusiones
La comorbilidad más común entre los pacientes hospitalizados por COVID en México fue la obesidad, seguida de la diabetes mellitus tipo 2 y la hipertensión.
Descargas
Citas
World Health Organization. Archived: WHO Timeline - COVID-19 [Internet]. Wold Health Organization. 2020 [citado el 11 de junio de 2023]. p. 2020. Disponible en: https://www.who.int/news/item/27-04-2020-who-timeline---covid-19
Noyola DE, Hermosillo-Arredondo N, Ramírez-Juárez C, Werge-Sánchez A. Association between obesity and diabetes prevalence and COVID-19 mortality in Mexico: an ecological study. J Infect Dev Ctries. 2021;15(10):1396–403. doi: 10.3855/JIDC.15075
Stokes EK, Zambrano LD, Anderson KN, Marder EP, Raz KM, El Burai Felix S, et al. Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(24):759–65. doi: 10.15585/MMWR.MM6924E2
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62. doi: 10.1016/S0140-6736(20)30566-3
Gobierno de México. Exceso de mortalidad en México COVID-19 [Internet]. 21 de junio. 2021 [citado el 11 de junio de 2023]. Disponible en: https://coronavirus.gob.mx/exceso-de-mortalidad-en-mexico/
INEGI. Prevalencia de Obesidad, Hipertensión y Diabetes para los Municipios de México 2018. 2020.
Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020;75(11):2829–45. doi: 10.1111/ALL.14429
Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, et al. ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia. J Virol. 2005;79(23):14614–21. doi: 10.1128/jvi.79.23.14614-14621.2005
Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1–2):107–10. doi: 10.1016/S0014-5793(02)03640-2
Verma A, Xu K, Du T, Zhu P, Liang Z, Liao S, et al. Expression of Human ACE2 in Lactobacillus and Beneficial Effects in Diabetic Retinopathy in Mice. Mol Ther Methods Clin Dev. 2019;14:161–70. doi: 10.1016/J.OMTM.2019.06.007
Li Y, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res [Internet]. 2020 [citado el 12 de junio de 2023];157. doi: 10.1016/J.PHRS.2020.104833
López-Otero D, López-Pais J, Cacho-Antonio CE, Antúnez-Muiños PJ, González-Ferrero T, Pérez-Poza M, et al. Impact of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on COVID-19 in a western population. CARDIOVID registry. Rev Esp Cardiol. 2021;74(2):175–82. doi: 10.1016/j.recesp.2020.05.030
Carvajal C. El endotelio: estructura, función y disfunción endotelial. Medicina Legal de Costa Rica. 2017;34(2):90–100.
Xu S wen, Ilyas I, Weng J ping. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol Sin. 2022;44(4):695–709. doi: 10.1038/s41401-022-00998-0
Faraj SS, Jalal PJ. IL1β, IL-6, and TNF-α cytokines cooperate to modulate a complicated medical condition among COVID-19 patients: case-control study. Ann Med Surg (Lond). 2023;85(6):2291–7. doi: 10.1097/MS9.0000000000000679
Chernyak B V., Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and Oxidative Stress. Biochemistry (Mosc). 2020;85(12):1543. doi: 10.1134/S0006297920120068
Barquera S, Rivera JA. Obesity in Mexico: rapid epidemiological transition and food industry interference in health policies. Lancet Diabetes Endocrinol. 2020;8(9):746–7. doi: 10.1016/S2213-8587(20)30269-2
Shamah-Levy T, Romero-Martínez M, Barrientos-Gutiérrez T, Cuevas-Nasu L, Bautista-Arredondo S, Colchero MA, Gaona- Pineda EB, Lazcano-Ponce E, Martínez-Barnetche J, Alpuche-Arana C R-DJ. Encuesta Nacional de Salud y Nutrición 2020 sobre Covid-19 [Internet]. Cuernavaca, México; 2021. Disponible en: https://www.insp.mx/resources/images/stories/2023/docs/230811_Ensanut2020sobreCovid_Nacionales.pdf
Dafallah Albashir AA. The potential impacts of obesity on COVID-19. Clin Med (Lond). 2020;20(4):E109–13. doi: 10.7861/CLINMED.2020-0239
Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851. doi: 10.5114/AOMS.2016.58928
Ni YN, Luo J, Yu H, Wang YW, Hu YH, Liu D, et al. Can body mass index predict clinical outcomes for patients with acute lung injury/acute respiratory distress syndrome? A meta-analysis. Crit Care. 2017;21(1). doi: 10.1186/S13054-017-1615-3
Jayarangaiah A, Kariyanna PT, Chen X, Jayarangaiah A, Kumar A. COVID-19-Associated Coagulopathy: An Exacerbated Immunothrombosis Response. Clin Appl Thromb Hemost. 2020;26. doi: 10.1177/1076029620943293
Pettit NN, MacKenzie EL, Ridgway JP, Pursell K, Ash D, Patel B, et al. Obesity is Associated with Increased Risk for Mortality Among Hospitalized Patients with COVID‐19. Obesity (Silver Spring) [Internet]. 2020 [citado el 27 de junio de 2023];28(10):1806. doi: 10.1002/OBY.22941
Kuperberg SJ, Navetta-Modrov B. The Role of Obesity in the Immunopathogenesis of COVID-19 Respiratory Disease and Critical Illness. Am J Respir Cell Mol Biol. 2021;65(1):113–21. doi: 10.1165/RCMB.2020-0236TR/SUPPL_FILE/DISCLOSURES.PDF
Biscarini S, Colaneri M, Ludovisi S, Seminari E, Pieri TC, Valsecchi P, et al. The obesity paradox: Analysis from the SMAtteo COvid-19 REgistry (SMACORE) cohort. Nutrition, Metabolism, and Cardiovascular Diseases [Internet]. 2020 [citado el 27 de junio de 2023];30(11):1920. doi: 10.1016/J.NUMECD.2020.07.047
Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14. doi: 10.1016/J.DIABRES.2009.10.007
INEGI. Comunicado de prensa 538/19. Características de las defunciones registradas. 2019;1–65.
Kumar A, Arora A, Sharma P, Anikhindi SA, Bansal N, Singla V, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2020;14(4):535–45. doi: 10.1016/j.dsx.2020.04.044
Alegre-Díaz J, Herrington W, López-Cervantes M, Gnatiuc L, Ramirez R, Hill M, et al. Diabetes and Cause-Specific Mortality in Mexico City. New England Journal of Medicine [Internet]. 2016 [citado el 27 de junio de 2023];375(20):1961–71. doi: 10.1056/NEJMOA1605368/SUPPL_FILE/NEJMOA1605368_DISCLOSURES.PDF
Bradley SA, Banach M, Alvarado N, Smokovski I, Bhaskar SMM. Prevalence and impact of diabetes in hospitalized COVID-19 patients: A systematic review and meta-analysis. J Diabetes [Internet]. 2022 [citado el 13 de agosto de 2023];14(2):144–57. doi: 10.1111/1753-0407.13243
Juárez-Ramírez C, Reyes-Morales H, Gutiérrez-Alba G, Reartes-Peñafiel DL, Flores-Hernández S, Muños-Hernández JA, et al. Local health systems resilience in managing the COVID-19 pandemic: lessons from Mexico. Health Policy Plan [Internet]. 2022 [citado el 16 de septiembre de 2023];37(10):1278–94. doi: 10.1093/HEAPOL/CZAC055
Juárez-Ramírez C, Théodore FL, Gómez-Dantés H. Vulnerability and risk: reflections on the COVID-19 pandemic. Rev Esc Enferm. 2022; doi: 10.1590/S1980-220X2020045203777.Vulnerability
Villafuerte-García A. La detección del SARS-CoV-2: un elemento crítico para el control de la pandemia. Facultad de Medicina UNAM. 2022;3(27):8–12.
Parra-Bracamonte GM, Lopez-Villalobos N, Velazquez MA, Parra-Bracamonte FE, Perales-Torres AL, Juárez Rendón KJ. Comparative analysis of risk factors for COVID-19 mortality before, during and after the vaccination programme in Mexico. Public Health. 2023;215:94–9. doi: 10.1016/J.PUHE.2022.12.006
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Revista de la Facultad de Medicina Humana
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.