The development and cross-cultural invariance of a brief measure of fear of COVID-19 vaccine in 13 Latin American countries
DOI:
https://doi.org/10.59885/cienciaypsique.2024.v3n4.01Keywords:
COVID-19, invariance, Latin America, fear, vaccinesAbstract
The existence of invariant instruments is useful for the assessment of emotions in different cultures. The current study aimed to develop and evaluate the measurement invariance of the COVID-19 fear of vaccination scale (EMV-COVID) in 13 Latin American countries. The sample consisted of 5775 participants selected by non-probability purposive sampling, residents of 13 Latin American countries. Confirmatory Factor Analysis, Multi-Group Factor Analysis Alignment to assess invariance and a Graded Response Model based on Item Response Theory were conducted. The EMV-COVID proved to be a brief, unidimensional 4-item measure with adequate evidence of reliability and invariance in the general population of 13 Latin American countries. Additionally, the items can differentiate between the responses of a person with a higher fear of vaccination and one with moderate or low levels of fear of vaccination. The results suggest that the VME-COVID is a valid brief scale measuring fear of vaccination against COVID-19 in cross-cultural studies in Latin America.
References
Ahorsu, D. K., Lin, C. Y., Imani, V., Saffari, M., Griffiths, M. D., & Pakpour, A. H. (2020). The fear of COVID-19 scale: development and initial validation. International Journal of Mental Health and Addiction, 1-9. https://doi.org/10.1007/s11469-020-00270-8
Alvarez-Risco, A., Mejia, C. R., Delgado-Zegarra, J., Del-AguilaArcentales, S., Arce-Esquivel, A. A., Valladares-Garrido, M. J., ... & Yáñez, J. A. (2020). The Peru approach against the COVID-19 infodemic: insights and strategies. The American Journal of Tropical Medicine and Hygiene, 103(2), 583-586. https://doi.org/10.4269/ajtmh.20-0536
Alyami, M., Henning, M., Krägeloh, C. U., & Alyami, H. (2021). Psychometric evaluation of the Arabic version of the Fear of COVID-19 Scale. International Journal of Mental Health and Addiction, 19(6), 2219-2232. https://doi.org/10.1007/s11469-020-00316-x
Aragón-Ayala, C. J., Copa-Uscamayta, J., Herrera, L., Zela-Coila, F., & Quispe-Juli, C. U. (2021). Interest in COVID-19 in Latin America and the Caribbean: an infodemiological study using Google Trends. Cadernos de Saude Publica, 37, e00270720. https://doi.org/10.1590/0102-311X00270720
Ashktorab, H., Pizuomo, A., González, N. A. F., Villagrana, E. D. C., Herrera-Solís, M. E., Cardenas, G., ... & Brim, H. (2021). A comprehensive analysis of COVID-19 impact in Latin America. Research Square. https://doi.org/10.21203/rs.3.rs-141245/v1
Asparouhov, T., & Muthén, B. (2014). Multiple-Group Factor Analysis Alignment. Structural Equation Modeling, 21(4), 495-508. https://doi.org/10.1080/10705511.2014.919210
Asparouhov, T., & Muthén, B. (2014b). Multiple-group factor analysis alignment. Structural Equation Modeling, 21(4), 495-508. https://doi.org/10.1080/10705511.2014.919210
Barreto, S. M., Miranda, J. J., Figueroa, J. P., Schmidt, M. I., Munoz, S., Kuri-Morales, P. P., & Silva Jr, J. B. (2012). Epidemiology in Latin America and the Caribbean: current situation and challenges. International Journal of Epidemiology, 41(2), 557-571. https://doi.org/10.1093/ije/dys017
Bendau, A., Plag, J., Petzold, M. B., & Ströhle, A. (2021). COVID-19 vaccine hesitancy and related fears and anxiety. International Immunopharmacology, 97, 107724. https://doi.org/10.1016/j.intimp.2021.107724
Bitan, D. T., Grossman-Giron, A., Bloch, Y., Mayer, Y., Shiffman, N., & Mendlovic, S. (2020). Fear of COVID-19 scale: Psychometric characteristics, reliability and validity in the Israeli population. Psychiatry Research, 289, 113100. https://doi.org/10.1016/j.psychres.2020.113100
Broche-Pérez, Y., Fernández-Fleites, Z., Jiménez-Puig, E., FernándezCastillo, E., & Rodríguez-Martin, B. C. (2020). Gender and fear of COVID-19 in a Cuban population sample. International Journal of Mental Health and Addiction, 20, 83-91 (2022). https://doi.org/10.1007/s11469-020-00343-8
Cai, L., & Monroe, S. (2014). A New Statistic for Evaluating Item Response Theory Models for Ordinal Data. University of California.
Caycho, T. (2017). Importancia del análisis de invarianza factorial en estudios comparativos en Ciencias de la Salud. Revista Cubana de Educación Médica Superior, 31(2), 1-3
Caycho-Rodríguez, T., Tomás, J. M., Barboza-Palomino, M., VenturaLeón, J., Gallegos, M., Reyes-Bossio, M., & Vilca, L. W. (2021b). Assessment of fear of COVID-19 in older adults: Validation of the fear of COVID-19 scale. International Journal of Mental Health and Addiction, 1-15. https://doi.org/10.1007/s11469-020-00438-2
Caycho-Rodríguez, T., Valencia, P. D., Vilca, L. W., Carbajal-León, C., Vivanco-Vidal, A., Saroli-Araníbar, D., ... & Flores-Mendoza, C. (2022a). Cross-cultural validation of the new version of the Coronavirus Anxiety Scale in twelve Latin American countries. Current Psychology, 1-18. https://doi.org/10.1007/s12144-021-02563-0
Caycho-Rodríguez, T., Valencia, P. D., Vilca, L. W., Cervigni, M., Gallegos, M., Martino, P., ... & Burgos Videla, C. (2021a). Crosscultural measurement invariance of the fear of COVID-19 scale in seven Latin American countries. Death Studies, 1-15. https://doi.org/10.1080/07481187.2021.1879318
Caycho-Rodríguez, T., Ventura-León, J., & Barboza-Palomino, M. (2021). Diseño y validación de una escala para medir la preocupación por el contagio de la COVID-19 (PRE-COVID-19). Enfermería Clínica, 31(3), 175-183. https://doi.org/10.1016/j.enfcli.2020.10.034
Caycho-Rodríguez, T., Vilca, L. W., Cervigni, M., Gallegos, M., Martino, P., Portillo, N., ... & Burgos Videla, C. (2020b). Fear of COVID-19 scale: Validity, reliability and factorial invariance in Argentina’s general population. Death Studies, 46(3), 543-552. https://doi.org/10.1080/07481187.2020.1836071
Ceron, W., Gruszynski Sanseverino, G., de-Lima-Santos, M. F., & Quiles, M. G. (2021). COVID-19 fake news diffusion across Latin America. Social Network Analysis and Mining, 11(1), 1-20. https://doi.org/10.1007/s13278-021-00753-z
Chalmers, R. P. (2012). Mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6). https://doi.org/10.18637/jss.v048.i06
Chen, F. F. (2008). What happens if we compare chopsticks with forks? The impact of making inappropriate comparisons in cross-cultural research. Journal of Personality and Social Psychology, 95(5), 1005- 1018. https://doi.org/10.1037/a0013193
Chen, W. H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational Behavioral Statistics, 22, 265-289. doi:10.2307/1165285
Cieciuch, J., Davidov, E., Schmidt, P., & Algesheimer, R. (2019). How to obtain comparable measures for cross-national comparisons. KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie, 71(1), 157-186. https://doi.org/10.1007/s11577-019-00598-7
Credé, M. (2018). What shall we do about grit? A critical review of what we know and what we don’t know. Educational Researcher, 47(9), 606-611. https://doi.org/10.3102/0013189X18801322
Crocker, L. & Algina, J. (1986). Introduction to classical and modern test theory. Fort Worth: Holt, Rinehart and Winston.
Davidov, E., Meuleman, B., Cieciuch, J., Schmidt, P., & Billiet, J. (2014). Measurement equivalence in cross-national research. Annual Review of Sociology, 40, 55-75. https://doi.org/10.1146/annurev-soc-071913-043137
Davidov, E., Muthen, B., & Schmidt, P. (2018). Measurement invariance in cross-national studies: Challenging traditional approaches and evaluating new ones. Sociological Methods & Research, 47(4), 631- 636. https://doi.org/10.1177/0049124118789708
De Figueiredo, A., Simas, C., Karafillakis, E., Paterson, P., & Larson, H. J. (2020). Mapping global trends in vaccine confidence and investigating barriers to vaccine uptake: a large-scale retrospective temporal modelling study. The Lancet, 396(10255), 898-908. https://doi.org/10.1016/S0140-6736(20)31558-0
Dominguez-Lara, S. (2019). Correlación entre residuales en análisis factorial confirmatorio: una breve guía para su uso e interpretación. Interacciones, 5(3), e207. https://doi.org/10.24016/2019.v5n3.207
Dominguez-Lara, S., & Merino-Soto, C. (2017). Una modificación del coeficiente alfa de Cronbach por errores correlacionados. Revista Médica de Chile, 145(2), 269-274. https://doi.org/10.4067/S0034-98872017000200018
Dror, A. A., Eisenbach, N., Taiber, S., Morozov, N. G., Mizrachi, M., Zigron, A., ... & Sela, E. (2020). Vaccine hesitancy: the next challenge in the fight against COVID-19. European Journal of Epidemiology, 35(8), 775-779. https://doi.org/10.1007/s10654- 020-00671-y
Dubé, E., & MacDonald, N. E. (2020). How can a global pandemic affect vaccine hesitancy? Expert Review of Vaccines, 19(10), 899- 901. https://doi.org/10.1080/14760584.2020.1825944
Dunn, T. J., Baguley, T., & Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105(3), 399-412. https://doi.org/10.1111/bjop.12046
Finney, S. J., & DiStefano, C. (2013). Nonnormal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (eds.), Structural equation modeling: A second course (pp. 439-492). IAP Information Age Publishing.
Fischer, R., & Karl, J. A. (2019). A primer to (cross-cultural) multigroup invariance testing possibilities in R. Frontiers in Psychology, 10, 1-18. https://doi.org/10.3389/fpsyg.2019.01507
Freeman, D., Lambe, S., Yu, L. M., Freeman, J., Chadwick, A., Vaccari, C., ... & Loe, B. S. (2021). Injection fears and COVID-19 vaccine hesitancy. Psychological Medicine, 1-11. https://doi.org/10.1017/ S0033291721002609
Gallegos, M., Cervigni, M., Consoli, A. J., Caycho, T., Polanco, F., Martino, P., ... & Cusinato, A. M. (2020a). COVID-19 in Latin America: A bibliometric analysis of scientific publications in health. Electronic Journal of General Medicine, 17(6), em261. https://doi.org/10.29333/ejgm/8460
Gallegos, M., Zalaquett, C., Luna Sánchez, S. E., Mazo-Zea, R., OrtizTorres, B., Penagos-Corzo, J. C., Portillo, N., Torres Fernández, I., Urzúa, A., Morgan Consoli, M., Polanco, F. A., Florez, A. M., & Lopes Miranda, R. (2020b). Coping with the Coronavirus (Covid-19) pandemic in the Americas: recommendations and guidelines for mental health. Revista Interamericana de Psicología/ Interamerican Journal of Psychology, 54(1), e1304. https://doi.org/10.30849/ripijp.v54i1.1304
Gallegos, M., Consoli, A., Franco Ferrari, I., Cervigni, M., Castro Pecanha, V., Martino, P., Caycho-Rodríguez, T. & Razumovskiy, A. (2021). COVID-19: Psychosocial impact and mental health in Latin America. Fractal: Revista de Psicología, 33(3), 226-233. https://doi.org/10.22409/1984-0292/v33i3/51234
Gómez-Salgado, J., Palomino-Baldeón, J. C., Ortega-Moreno, M., Fagundo-Rivera, J., Allande-Cussó, R., & Ruiz-Frutos, C. (2022). COVID-19 information received by the Peruvian population, during the first phase of the pandemic, and its association with developing psychological distress: Information about COVID-19 and distress in Peru. Medicine, 101(5), e28625. https://doi.org/10.1097/MD.0000000000028625
Gorsuch, R. L. (1997). Exploratory factor analysis: Its role in item analysis. Journal of Personality Assessment, 68(3), 532-560. https://doi.org/10.1207/s15327752jpa6803_5
Haleem, A., Javaid, M., & Vaishya, R. (2020). Effects of COVID-19 pandemic in daily life. Current Medicine Research and Practice, 10(2), 78-79. https://doi.org/10.1016/j.cmrp.2020.03.011
Harper, C. A., Satchell, L. P., Fido, D., & Latzman, R. D. (2021). Functional fear predicts public health compliance in the COVID-19 pandemic. International Journal of Mental Health and Addiction, 19(5), 1875-1888. https://doi.org/10.1007/s11469-020-00281-5
Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2018). semTools: Useful tools for structural equation modeling. R package version 0.5-1. https://CRAN.R-project.org/package=semTools
Kang, T., & Chen, T. T. (2011). Performance of the generalized S-X2 item fit index for the graded response model. Asia Pacific Education Review, 12(1), 89-96. https://doi.org/10.1007/s12564-010-9082-4
Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The performance of RMSEA in models with small degrees of freedom. Sociological Methods & Research, 44(3), 486-507. https://doi.org/10.1177/0049124114543236
Kim, E. S., Cao, C., Wang, Y., & Nguyen, D. T. (2017). Measurement invariance testing with many groups: A comparison of five approaches. Structural Equation Modeling, 24(4), 524-544. https://doi.org/10.1080/10705511.2017.1304822
Kline, R. B. (2015). Principles and Practice of Structural Equation Modeling (4.a ed.). The Guilford Press.
Kotta, I., Kalcza-Janosi, K., Szabo, K., & Marschalko, E. E. (2021). Development and Validation of the Multidimensional COVID-19 Vaccine Hesitancy Scale. Human Vaccines & Immunotherapeutics, 1-10. https://doi.org/10.1080/21645515.2021.2007708
Lin, C. Y., Hou, W. L., Mamun, M. A., Aparecido da Silva, J., Broche‐ Pérez, Y., Ullah, I., ... & Pakpour, A. H. (2021). Fear of COVID‐19 Scale (FCV‐19S) across countries: Measurement invariance issues. Nursing Open, 8(4), 1892-1908. https://doi.org/10.1002/nop2.855
Mullo, A., De Casas, P., & Balseca, J. M. (2021). Tratamiento informativo y competencias mediáticas sobre la COVID-19 en Ecuador. Revista de Comunicación, 20(1), 137-152. http://dx.doi.org/10.26441/rc20.1-2021-a8
Lubbe, D., & Schuster, C. (2019). A Graded Response Model Framework for Questionnaires With Uniform Response Formats. Applied Psychological Measurement, 43(4), 290-302. https://doi.org/10.1177/0146621618789394
Luo, F., Ghanei Gheshlagh, R., Dalvand, S., Saedmoucheshi, S., & Li, Q. (2021). Systematic review and meta-analysis of fear of COVID-19. Frontiers in Psychology, 12, 1311. https://doi.org/10.3389/fpsyg.2021.661078
Malas, O., & Tolsá, M. D. (2021). Vaccination Fear Scale (VFS-6): Development and Initial Validation. Mediterranean Journal of Clinical Psychology, 9(2), 1-19. https://doi.org/10.13129/2282-1619/mjcp-2971
Mamani, P. G. R., Morales-García, W. C., White, M., & MarquezRuiz, M. S. (2020). Propiedades de una escala de preocupación por la COVID-19: análisis exploratorio en una muestra peruana. Medicina Clínica, 155(12), 535-537. https://doi.org/10.1016/j.medcli.2020.06.022
Marsh, H. W., Liem, G. A. D., Martin, A. J., Morin, A. J., & Nagengast, B. (2011). Methodological measurement fruitfulness of exploratory structural equation modeling (ESEM): New approaches to key substantive issues in motivation and engagement. Journal of Psychoeducational Assessment, 29(4), 322-346. https://doi.org/10.1177/0734282911406657
Maydeu-Olivares, A. (2013). Goodness-of-Fit Assessment of Item Response Theory Models. Measurement, 11(3), 71-101. https://doi.org/10.1080/15366367.2013.831680
Maydeu-Olivares, A., & Joe, H. (2014). Assessing Approximate Fit in Categorical Data Analysis. Multivariate Behavioral Research, 49(4), 305-328. https://doi.org/10.1080/00273171.2014.911075
McDonald, R. P. (1999). Test Theory: A Unified Treatment. Taylor & Francis.
Mercado-Lara, M. F., Campo-Arias, A., & Monterrosa-Castro, Á. (2021). Validity and reliability of the Spanish version of fear of COVID-19 scale in Colombian physicians. International Journal of Mental Health and Addiction, 20, 1122-1129. https://doi.org/10.1007/s11469-020-00430-w
Milfont, T. L., & Fischer, R. (2010). Testing measurement invariance across groups: Applications in cross-cultural research. International Journal of Psychological Research, 3(1), 111-130. https://doi.org/10.21500/20112084.857
Montero, E. (2000). La teoría de respuesta a los ítemes: una moderna alternativa para el análisis psicométrico de instrumentos de medición. Revista de Matemática: teoría y aplicaciones, 7(1-2), 217- 228. https://doi.org/10.15517/RMTA.V7I1-2.191
Moore, D. C. B. C., Nehab, M. F., Camacho, K. G., Reis, A. T., de Fátima Junqueira-Marinho, M., Abramov, D. M., ... & Correia, R. F. (2021). Low COVID-19 vaccine hesitancy in Brazil. Vaccine, 39(42), 6262- 6268. https://doi.org/10.1016/j.vaccine.2021.09.013
Mulder, M., Hoog, J. O. T., Buytene, S., & De Vries, J. (2013). Validation of a screening instrument for the fear of injection in dialysis patients. Journal of Renal Care, 39(4), 214-221. https://doi.org/10.1111/j.1755-6686.2013.12039.x
Murphy, J., Vallières, F., Bentall, R. P., Shevlin, M., McBride, O., Hartman, T. K., ... & Hyland, P. (2021). Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nature Communications, 12(1), 1-15. https://doi.org/10.1038/s41467-020-20226-9
Muthén, B. O., & Muthén, L. K. (2012). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén & Muthén.
Muthén, B., and Asparouhov, T. (2013a). New Methods for the Study of Measurement Invariance with Many Groups. Technical report. http://statmodel2.com/download/PolAn.pdf.
Muthén, B., & Asparouhov, T. (2013b). BSEM measurement invariance analysis. Mplus web notes, 17, 1-48. https://www.statmodel.com/examples/webnotes/webnote17.pdf
Muthén, B., & Asparouhov, T. (2014). IRT studies of many groups: The alignment method. Frontiers in Psychology, 5, 978. https://doi.org/10.3389/fpsyg.2014.00978
Opel, D. J., Taylor, J. A., Zhou, C., Catz, S., Myaing, M., & MangioneSmith, R. (2013). The relationship between parent attitudes about childhood vaccines survey scores and future child immunization status: a validation study. JAMA Pediatrics, 167(11), 1065-1071. https://doi.org/10.1001/jamapediatrics.2013.2483
Paek, I., & Cole, K. (2020). Using R for item response theory model applications. Routledge.
Pakpour, A. H., & Griffiths, M. D. (2020). The fear of COVID-19 and its role in preventive behaviors. Journal of Concurrent Disorders, 2(1), 58-63.
Pérez Milian, J. M., Berrio Aguila, J. E., Ojeda, Y. P., Rodríguez Quesada, N. Y., Fernández Pérez, S. E., & Aranguren Torriente, D. (2020). Evaluación de la satisfacción de pacientes atendidos por la COVID-19 en el Hospital Universitario Clínico Quirúrgico Cmdte. Manuel Fajardo Rivero. Medicentro Electrónica, 24(3), 630-641.
Pimlott, N. (2019). Vaccine hesitancy and the art of family medicine. Canadian Family Physician, 65(3), 159-159.
R Core Team. (2019). A language and environment for statistical computing (R version 3.6.1). R Foundation for Statistical Computing. http://www.r-project.org/
Rhemtulla, M., Brosseau-Liard, P. E., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354-373. https://doi.org/10.1037/a0029315
Robitzsch, A. (2020). sirt: Supplementary Item Response Theory Models (R package version 3.9-4). https://cran.r-project.org/package=sirt
Rocha, Y. M., de Moura, G. A., Desidério, G. A., de Oliveira, C. H., Lourenço, F. D., & de Figueiredo Nicolete, L. D. (2021). The impact of fake news on social media and its influence on health during the COVID-19 pandemic: A systematic review. Journal of Public Health, 1-10. https://doi.org/10.1007/s10389-021-01658-z
Rosseel, Y. (2012). Iavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02
RStudio Team. (2018). RStudio: Integrated Development Environment for R. RStudio, Inc. http://www.rstudio.com/
Samejima, F. (1997). Graded response model. In W. J. Van der Linden & R. K. Hambleton (eds.), Handbook of modern Item Response Theory (pp. 85-100). New York, NY: Springer.
Sawicki, A. J., Żemojtel-Piotrowska, M., Balcerowska, J. M., Sawicka, M. J., Piotrowski, J., Sedikides, C., Jonason, P. K., Maltby, J., Adamovic, M., Agada, A. M. D., Ahmed, O., Al-Shawaf, L., Appiah, S. C. Y., Ardi, R., Babakr, Z. H., Bălţătescu, S., Bonato, M., Cowden, R. G., Chobthamkit, P., . . . Zand, S. (2022). The fear of COVID-19 scale: Its structure and measurement invariance across 48 countries. Psychological Assessment, 34(3), 294-310. https://doi.org/10.1037/pas0001102
Scholten, H., Quezada-Scholz, V. E., Salas, G., Barria-Asenjo, N. A., Molina, R., García, J. E., ... & Somarriva, F. (2020). Abordaje psicológico del COVID-19: una revisión narrativa de la experiencia latinoamericana. Revista Interamericana de Psicología, 54(1), e1287. https://doi.org/10.30849/ripijp.v54i1.1287
Schumacker, R. E., & Lomax, R. G. (2015). A Beginner’s Guide to Structural Equation Modeling (4.a ed.). Routledge.
Smith, B. M., Twohy, A. J., & Smith, G. S. (2020). Psychological inflexibility and intolerance of uncertainty moderate the relationship between social isolation and mental health outcomes during COVID-19. Journal of Contextual Behavioral Science, 18, 162-174. https://doi.org/10.1016/j.jcbs.2020.09.005
Smith, G. T., McCarthy, D. M., & Anderson, K. G. (2000). On the sins of short-form development. Psychological Assessment, 12(1), 102- 111. https://doi.org/10.1037/1040-3590.12.1.102
Steinberg, L., & Thissen, D. (2013). Item response theory. In J. S. Comer & P. C. Kendall (Eds.), The Oxford handbook of research strategies for clinical psychology (pp. 336-373). Oxford University Press.
Streiner, D. L. (1994). Figuring out factors: the use and misuse of factor analysis. The Canadian Journal of Psychiatry, 39(3), 135-140. https://doi.org/10.1177/070674379403900303
Taasoobshirazi, G., & Wang, S. (2016). The performance of the SRMR, RMSEA, CFI, and TLI: An examination of sample size, path size, and degrees of freedom. Journal of Applied Quantitative Methods, 11(3), 31-39.
Taylor, L. (2020). Uruguay is winning against covid-19. This is how. BMJ, 370. https://doi.org/10.1136/bmj.m3575
Van De Schoot, R., Kluytmans, A., Tummers, L., Lugtig, P., Hox, J., & Muthén, B. (2013). Facing off with Scylla and Charybdis: a comparison of scalar, partial, and the novel possibility of approximate measurement invariance. Frontiers in Psychology, 4, 770. https://doi.org/10.3389/fpsyg.2013.00770
Van der Linden, W. J. (Ed.). (2017). Handbook of Item Response Theory: Volume 2: Statistical Tools. CRC Press.
Viladrich, C., Angulo-Brunet, A., & Doval, E. (2017). A journey around alpha and omega to estimate internal consistency reliability. Anales de Psicología, 33(3), 755-782. https://doi.org/10.6018/analesps.33.3.268401
WHO (2019). Ten threats to global health in 2019. Geneva, Switz: World Health Organization; Available from: https://www.who.int/newsroom/spotlight/ten-threats-to-global-health-in-2019
Yeşiltepe, A., Aslan, S., & Bulbuloglu, S. (2021). Investigation of perceived fear of COVID-19 and vaccine hesitancy in nursing students. Human Vaccines & Immunotherapeutics, 1-8. https://doi.org/10.1080/21645515.2021.2000817
Yuan, K.-H., & Bentler, P. M. (2000). Three likelihoodbased methods for mean and Covariance structure analysis with nonnormal missing data. Sociological Methodology, 30(1), 165-200. https://doi.org/10.1111/0081-1750.00078
Zickar, M. J., Russel, S. S., Smith, C. S., Bohle, P., & Tilley, A. J. (2002). Evaluating two morningness scales with item response theory. Personality and Individual Differences, 33(1), 11-24. https://doi.org/10.1016/S0191-8869(01)00131-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ciencia y Psique
This work is licensed under a Creative Commons Attribution 4.0 International License.